・论著・一次研究・

超滤离心–HPLC法测定鲁索替尼固体 脂质纳米粒的包封率

冯世权1,于佳岐2,董德峤1,甘昌冉1,彭浩洋1,段成成1,秦贞苗1,高亚男1

海南医科大学药学院(海口 571199)
 海南医科大学国际教育学院(海口 571199)

【摘要】目的 建立鲁索替尼固体脂质纳米粒(Ru-SLN)包封率的测定方法。 方法 以熔融乳化 – 超声法制备 Ru-SLN,以超滤离心法分离游离药物和 Ru-SLN,采 用 HPLC 法测定 Ru 的含量,并计算其包封率。结果 Ru 在 4.08~408.00 µg/mL 浓度范 围内线性关系良好(*r*=0.9997),平均回收率为 101.60%,*RSD*为 1.09%(*n*=9);超 滤离心法选择截留分子量为 10 kDa 的超滤离心管,10 961×g 离心 10 min,无显著膜 吸附作用,测得 Ru-SLN 的包封率为(97.01±1.23)%。结论 超滤离心法结合 HPLC 法测定 Ru-SLN 包封率快速便捷、准确性高,可为 Ru 制剂含量及包封率的测定提供 有效的试验指导。

【关键词】鲁索替尼;固体脂质纳米粒;熔融乳化超声法;高效液相色谱法;超滤 离心法;包封率;方法学

【中图分类号】R94 【文献标识码】A

Determination of encapsulation rate of ruxolitinib solid lipid nanoparticles by ultrafiltration centrifugation-HPLC method

FENG Shiquan¹, YU Jiaqi², DONG Deqiao¹, GAN Changran¹, PENG Haoyang¹, DUAN Chengcheng¹, QIN Zhenmiao¹, GAO Yanan¹

 School of Pharmacy, Hainan Medical University, Haikou 571199, China
 School of International Education, Hainan Medical University, Haikou 571199, China
 Corresponding authors: GAO Yanan, Email: gao_yanan@hainmc.edu.cn; QIN Zhenmiao, Email: qzm3222006@126.com

【Abstract】Objective To establish a method for determining the encapsulation rate of ruxolitinib solid lipid nanoparticles (Ru-SLN). Methods Ru-SLN was prepared using the melt emulsification-ultrasonic method, and the free drug and Ru-SLN were separated using ultrafiltration centrifugation. The Ru content was determined using HPLC, and the encapsulation rate was calculated accordingly. **Results** Ru had a good linear relationship within the concentration range of 4.08-408.00 µg/mL (r=0.999 7), and its average recovery rate was 101.60%, with the *RSD* of 1.09% (n=9). The ultrafiltration centrifugation selected ultrafiltration centrifuge tubes with a cut-off molecular weight of 10 kDa, centrifuged at 10 961 × g for 10 minutes, and

DOI: 10.12173/j.issn.2097-4922.202406146

基金项目:国家自然科学基金地区科学基金项目(82060642);海南省自然科学基金高层次人才项目(821RC569) 通信作者:高亚男,博士,副教授,硕士研究生导师,Email:gao_yanan@hainmc.edu.cn

秦贞苗,硕士,副研究员, Email: qzm3222006@126.com

showed no significant membrane adsorption. The encapsulation rate of Ru-SLN was determined to be (97.01 ± 1.23) %. Conclusion The combination of ultrafiltration centrifugation and HPLC method for determining the encapsulation efficiency of Ru-SLN is fast, convenient, and highly accurate, providing effective experimental guidance for the determination of Ru formulation content and encapsulation efficiency.

Keywords Ruxolutinib; Solid lipid nanoparticles; Melt-emulsification ultrasonic method; High performance liquid chromatography; Ultrafiltration centrifugation; Encapsulation rate; Methodology

鲁索替尼(ruxolitinib, Ru)是选择性 Janus 激 酶(Janus kinase, JAK)抑制剂,能够选择性抑制 JAK1和JAK2,防止以JAKs为介导的细胞因子或 其他分子将外界信号传递至细胞核[1-2]。其口服片 剂(商品名: Jakavi)是美国食品药品监督管理局 (Food and Drug Administration, FDA) 批准的首个 用于治疗骨髓纤维化的口服药物^[3],也是治疗对羟 基脲治疗效果不充分或不耐受的真性红细胞增多症 的二线用药^[4];其外用乳膏(商品名: Opzelura) 是 FDA 批准作为非节段性白癜风的首个家庭治疗 药物¹⁵,对白癜风、特应性皮炎、斑秃等皮肤疾病 具有较好的疗效^[6-8]。2023 年 8 月, Opzelura 落地国 内医疗先行区,针对治疗白癜风开出国内首张处方, 为白癜风治疗药物迎来新突破。然而,乳膏作为经 皮给药载体,药物的透皮效果及皮肤滞留效果还有 很大的提升空间^[9-10]。固体脂质纳米粒(solid lipid nanoparticles, SLN)作为一种新型的给药载体,能 够提高药物稳定性和溶解性,控制粒径从而提高药 物经皮渗透量和皮肤滞留率等[11],在多种给药途径 中均具有较大的开发潜力和市场前景^[12]。将 Ru 制 备为 SLN,有望提高药物经皮给药透过量和皮肤滞 留率,在较小给药量下达到满意的治疗效果。

包封率是 SLN 处方工艺筛选和质量评价的重 要指标,国家药品监督管理局新药审评中心 2021 年 8 月 27 日发布的《纳米药物质量控制研究技 术指导原则(试行)》中特别强调了应根据纳米 药物的特点对包封率进行方法的适用性研究和验 证^[13]。常用的包封率测定方法有超滤离心法、超 速离心法、微柱离心法和分子排阻色谱法等^[14]。 超速离心法对仪器要求较高;微柱离心法需人工 补充凝胶填料,易受人为影响导致测定结果不准 确;透析法的透析时间长,需要大量透析介质; 超滤离心法简便易于操作,适用范围广,是较为 常用的方法之一^[15]。本文将 HPLC 法与超滤离 心法相结合,建立一种专属性强、准确、高效的 Ru-SLN 包封率测定方法,旨在为 Ru 纳米制剂含 量及包封率的测定提供试验基础。

1 材料

1.1 主要仪器

DF-101S集热式恒温加热磁力搅拌器(上海 力辰邦西仪器科技有限公司);SCIENTZ-IID 超 声波细胞破碎仪(宁波新芝生物科技股份有限公 司);HT165R高速台式冷冻离心机(湖南湘仪 实验室仪器开发有限公司);90PlusPALS纳米 粒度及Zeta电位分析仪(美国布鲁克海文仪器公 司);T6新世纪紫外可见分光光度计(北京普 析通用仪器有限责任公司);Ultimate3000高效 液相色谱仪,包括LPG-3400SDN进样泵、WPS-3000SLANALYTICAL自动进样器和VWD-3100 检测器(美国赛默飞世尔科技公司);HT-7800 透射电子显微镜(株式会社日立制作所)。

1.2 主要药品与试剂

Ru(南京泽和医药科技有限公司,批号: 202203001,纯度 99.7%);聚氧乙烯氢化蓖麻 油 CO-40(上海源叶生物科技有限公司,批号: S25692);月桂酸(上海源叶生物科技有限公司, 批号:S24134);大豆卵磷脂(LIPOID,批号: 579010-1210122-01/713);乙腈和甲醇为色谱纯, 其余试剂均为分析纯,水为超纯水。

2 方法与结果

2.1 Ru-SLN的制备

采用熔融乳化 – 超声法制备 Ru-SLN^[16]。精密称取 Ru 80 mg、月桂酸 80 mg,在75℃下加热搅 拌熔融,得油相;精密称取 CO-40 750 mg、大豆 卵磷脂 300 mg,置于15 mL 超纯水中溶解混匀, 得水相。待水相加热至与油相等温后缓慢滴入油相 中并以 1 000 r/min 转速搅拌 20 min,得初乳;将 初乳常温超声(功率:480 W, off:5 s, on:5 s) 10 min 后置于冰浴中固化 10 min,以超纯水定容至 20 mL,得 Ru-SLN。按上述方法制备不含主药 Ru 的空白 SLN。

2.2 Ru-SLN 粒径的测定

以超纯水将 Ru-SLN 适当稀释后,使 用粒度分析仪的动态光散射(dynamic light scattering, DLS)测定 Ru-SLN 的平均流体动 力学粒径(nm)及多分散指数(polydispersity index, PDI)。结果得到 Ru-SLN 的平均粒径为 (41.58 ± 2.83) nm, PDI 为 0.248 ± 0.011。纳米 粒径范围应在 10~1 000 nm 之间, Ru-SLN 符合 纳米粒径范围; PDI 范围在 0~0.5 内, Ru-SLN 分散较均匀。Ru-SLN 的粒径分布见图 1。

图1 Ru-SLN的粒径分布图 Figure 1. The particle size distribution of Ru-SLN

2.3 Ru-SLN形态的测定

以超纯水将 Ru-SLN 适当稀释后,吸取 10 μL 滴于有支撑膜的铜网上,自然挥干,重复 滴加 3 次,再滴加 2% 磷钨酸溶液 10 μL 负染, 自然挥干,复染 3 次,于透射电子显微镜下观察 Ru-SLN。由图 2 可知, Ru-SLN 整体呈圆形、大 小较均一,分布较均匀,透射电子显微镜下粒子 粒径与动态光散射法测定结果相似。

图2 Ru-SLN的透射电镜图 Figure 2. The transmission electron microscope image of Ru-SLN

2.4.1 色谱条件

色谱柱: Horizon C₁₈柱(250 mm×4.6 mm, 5 μm); 流动相: 含 0.05% 磷酸的 10 mmol/L 碳 酸氢铵水溶液 – 乙腈(55:45); 检测波长: 260 nm;流速: 1.0 mL/min;柱温:30℃;进样量: 10 μL。

2.4.2 溶液的制备

对照品溶液:取 Ru 20 mg,精密称定,置于 10 mL 量瓶中,加入适量乙腈充分溶解混匀后定 容至刻度,得储备液(2000 μg/mL)。精密量取 储备液 1 mL 置于 10 mL 量瓶中,加入适量流动 相充分混匀后定容至刻度,过 0.22 μm 微孔滤膜, 即得对照品溶液(200 μg/mL)。

供试品溶液:精密量取 Ru-SLN 混悬液 1 mL 置于 10 mL 量瓶中,加入适量乙腈超声 10 min 溶 解破乳,再以流动相定容至刻度,摇匀后过0.22 µm 微孔滤膜,即得。

阴性样品溶液:精密量取空白 SLN 混悬液 1 mL,置于 10 mL量瓶中,加入适量乙腈超声 10 min溶解破乳,再以流动相定容至刻度,摇匀 后过 0.22 μm 微孔滤膜,即得。

2.4.3 专属性的考察

精密量取"2.4.2"项下对照品溶液、供试品 溶液和阴性样品溶液,按照"2.4.1"项下色谱条 件依次进样,记录色谱图,考察辅料对药物含量 测定的影响。由图3可知,供试品与对照品在相 同保留时间处有一色谱峰,而阴性样品无相应色 谱峰,表明辅料对 Ru 的测定无干扰。

注: A. 对照品; B. 供试品; C. 空白SLN; 1.Ru。

2.4.4 标准曲线绘制

精密量取"2.4.2"项下 Ru 储备液适量,以 流动相稀释制成4.08、51.00、122.40、204.00、 285.60、346.80、408.00 μg/mL 的对照品溶液, 按照"2.4.1"项下色谱条件依次进样,记录峰面 积。以浓度为横坐标(*X*,μg/mL)、峰面积为 纵坐标(*Y*)绘制标准曲线,并计算得回归方程 *Y*=0.292 9*X*+0.667 6(*r*=0.999 7)。结果表明 Ru 在 4.08~408.00 μg/mL 内峰面积与浓度线性关系良好。 2.4.5 重复性试验

按照 "2.4.2" 项下方法平行制备 6 份供试品 溶液,再按 "2.4.1" 项下色谱条件依次进样, 记录峰面积,计算得供试品中 Ru 的平均含量为 103.30 μg/mL, *RSD* 为 0.56% (*n*=6),结果表明 该方法重复性良好。

2.4.6 稳定性试验

精密量取"2.4.2"项下供试品溶液,按照 "2.4.1"项下色谱条件分别在0、2、4、6、8、 10、12、24 h进样,记录峰面积,计算得峰面积 的 RSD 为 0.93% (n=8),结果表明 Ru-SLN 混 悬液在 24 h 内稳定性良好。

2.4.7 精密度试验

精密量取"2.4.2"项下 Ru 储备液适量,以 流动相稀释制成低、中、高浓度(160、200、 240 μg/mL)待测液,按照"2.4.1"项下色谱条件 将待测液于1d内分别进样5次,记录峰面积, 计算日内精密度;连续测定3d,记录峰面积, 计算日间精密度。结果表明该方法具有良好的精 密度,具体见表1。

2.4.8 回收率试验

精密称取 "2.4.2" 项下 Ru 储备液适量与 空白 SLN 混悬液 1.0 mL,加入适量乙腈超声 10 min 破乳后以流动相定容,制成低、中、高浓 度(160、200、240 μg/mL)待测液,按照 "2.4.1" 项下色谱条件依次进样,记录峰面积,计算得 3 个浓度 Ru 的平均回收率为 101.60%, *RSD* 为 1.09% (*n*=9),表明该方法回收率良好,具体 见表 2。

表1 不同浓度Ru储备液的日内、日间精密度

Table 1. The intraday and daytime precision of Ru stock solution with different concentration					
组别	日内精密度(n=5)		日间精密度(n=15)		
		平均浓度(μg/mL)	RSD (%)	 平均浓度(μg/mL)	RSD (%)
低		153.69	0.07	156.18	1.52
中		203.38	0.10	203.36	1.14
高		230.31	0.16	232.30	0.82

表2 不同浓度Ru储备液、B-SLN物理混合物的回收率(*n*=3) Table 2. The recovery rates of the mixture of Ru stock solution and B-SLN with

-		
	different concentration $(n-2)$	

组别	理论浓度(μg/mL)	实际浓度(μg/mL)	回收率(%)	平均回收率(%)	RSD (%)
低浓度	158.08	160.43	101.49	103.63	1.82
		166.04	105.03		
		164.96	104.35		
中浓度	197.60	200.70	101.57	100.47	1.00
		198.04	100.22		
		196.83	99.61		
高浓度	237.12	237.58	100.19	100.69	0.44
		239.10	100.84		
		239.61	101.05		

2.5 Ru-SLN包封率测定方法的建立

本文以超滤离心法测定 Ru-SLN 的包封率。 按照"2.1"项下方法制备 Ru-SLN,取 Ru-SLN 混悬液适量置于超滤离心管中,在冷冻离心机中 离心后收集滤液,滤液经乙腈 1:1 稀释后按照 "2.4.1"项下色谱条件进样,记录峰面积,计算 游离药物量(*W_{游离}*);精密量取"2.4.2"项下 供试品溶液适量,按照"2.4.1"项下色谱条件进 样,记录峰面积,计算总药物量(W_{\pm}),根据 公式计算 Ru-SLN 包封率:

包封率(%) = $(W_{\hat{k}} - W_{\hat{k}\hat{n}\hat{n}})/W_{\hat{k}} \times 100\%$ 2.5.1 截留分子量的筛选

精密量取 B-SLN 混悬液适量置于截留分子 量为 3、10、30 kDa 的超滤离心管中, 15 784 × g 离心 30 min,收集滤液。滤液经稀释后置于粒径 测定仪中检测纳米粒子情况,结果见图 4。空白 SLN 混悬液经 3、10、30 kDa 的超滤管离心后滤 液中均无相应粒子积分,初步表明 3 种超滤管均 能有效截留纳米粒。

精密量取空白 SLN 混悬液适量置于截留 分子量为 3、10、30 kDa 的超滤离心管中, 15 784 × g 离心 30 min,收集滤液。滤液分别 在紫外分光光度计中 510 nm 波长处测定吸光度 (A_{滤液}),空白 SLN 经适当稀释后测定吸光度 (A_{空白 SLN}),按公式计算截留率:截留率(%)= (A_{空白 SLN}-A_{滤液})/A_{空白 SLN}×100%,结果见表 3。
3 10 30 kDa 超滤管中溶液透光密较高 美明

3、10、30 kDa 超滤管中溶液透光率较高,表明 3 种超滤管均无纳米粒。

图4 不同截留分子量超滤离心管的滤液粒径图

注: A.3 kDa; B.10 kDa; C.30 kDa; D.空白SLN。

表3 不同超滤离心管对空白SLN截留效果的影响

($\overline{x} \pm s$, n=3) Table 3. Retention effects of different ultrafiltration centrifugal tubes on blank SLN

$(\overline{x} \pm s, n=3)$			
超滤管截留分子量(kDa)	平均截留率(%)		
3	98.58 ± 0.67		
10	98.98 ± 0.45		
30	96.66 ± 2.16		

精密量取"2.4.2"项下对照品溶液适量置于 截留分子量为3、10、30 kDa 的超滤离心管中, 15 784 ×g离心 30 min,收集滤液。滤液经适当 稀释后按照"2.4.1"项下色谱条件依次进样,记 录峰面积,计算得对照品溶液在3种超滤管中的 平均回收率分别为103.42%、98.75%、97.78%, *RSD*分别为6.11%、4.83%、0.03%(*n*=3),表 明游离 Ru均能通过3种不同分子量的超滤管。 综上结果,选择截留分子量为10 kDa 的超滤离心 管进行后续 Ru-SLN 的离心试验。 2.5.2 离心力的筛选

精密量取"2.4.2"项下供试品溶液适量置 于截留分子量为10kDa的超滤离心管中,分别 以7015×g、8878×g、10961×g、13263×g、 15784×g离心30min,收集滤液。滤液经适当 稀释后按照"2.4.1"项下色谱条件依次进样,记 录峰面积,包封率,考察不同离心转速对包封率 的影响,结果见表4。离心力在8878~13263×g 的范围内包封率较为稳定,最终选择10961×g 作为离心力。

表4 不同离心转速对Ru-SLN包封率的影响 (<u>x</u>±s, *n*=3)

Table 4. The influence of different centrifugal speed on Ru–SLN encapsulation

rate $(\overline{x} \pm s, n=3)$

离心力 (×g)	平均包封率(%)
7 015	94.88 ± 0.91
8 878	97.31 ± 0.35
10 961	97.47 ± 0.35
13 263	97.42 ± 0.27
15 784	96.92 ± 0.11

2.5.3 离心时间的筛选

精密量取"2.4.2"项下供试品溶液适量置于 截留分子量为10kDa的超滤离心管中,分别以 10961×g离心10、20、30、40、50min,收集滤液。 滤液经适当稀释后按照"2.4.1"项下色谱条件依次 进样,记录峰面积,计算包封率,考察不同离心时 间对包封率的影响,结果见表5。离心时间对包封 率影响不大,最终选择最短离心时间10min。

表5 不同离心时间对Ru-SLN包封率的影响 (<u>x</u>±s, *n*=3)

Table 5. The influence of different centrifugaltime on Ru–SLN encapsulation

rate ($\overline{x} \pm s$, $n=3$)			
离心时间 (min)	平均包封率(%)		
10	97.66 ± 0.17		
20	96.90 ± 0.16		
30	96.62 ± 0.13		
40	96.79 ± 0.34		
50	96.88 ± 0.15		

2.5.4 超滤膜的吸附性考察

精密量取"2.4.2"项下 Ru 储备液适量,以 流动相稀释制成低、中、高浓度(160、200、 240 μg/mL)待测液,置于截留分子量为10 kDa 的超滤离心管中,10961 ×g离心10min,收集 滤液按照"2.4.1"项下色谱条件依次进样,记录 峰面积,计算得3种浓度待测液的平均回收率分 别为95.71%、96.71%、98.95%, RSD分别为1.45%、 1.58%、1.82%(n=3),表明超滤管的滤膜对游 离药物无吸附作用。

2.5.5 加样回收率考察

精密量取"2.4.2"项下 Ru 储备液适量,加 入适量 B-SLN 以超纯水稀释制成低、中、高浓 度待测液,置于截留分子量为 10 kDa 的超滤离 心管中,10 961 × g 离心 10 min,收集滤液按照 "2.4.1"项下色谱条件依次进样,记录峰面积,

计算得3种浓度待测液的平均回收率为99.16%, RSD为1.24%(n=9),表明纳米粒对游离药物 无吸附作用。

2.5.6 包封率的测定

按照"2.1"项下平行制备3批次Ru-SLN 混悬液,分别取适量Ru-SLN置于截留分子 量为10kDa的超滤离心管中,10961×g离心 10min,收集滤液,滤液经适当稀释后按照"2.4.1" 项下色谱条件依次进样,记录峰面积,计算包封 率,结果见表6。

Table 6. The determination results of Ru–SLN encapsulation rate ($\overline{x} \pm s$, n=3)				
批次	游离药物量(µg)	总药物量(μg)	包封率(%)	平均包封率(%)
1	21.28	494.90	95.70	97.01 ± 1.23
2	14.37	511.53	97.19	
3	9.67	520.07	98.14	

表6 Ru–SLN包封率的测定结果($\bar{x} \pm s$, n=3)

3 讨论

3.1 流行相筛选

本研究为提高 HPLC 检测 Ru 含量的准确 性,在试验前期,根据厂家所提供 HPLC 方法 结合自身研究经验,考察碳酸氢铵/乙酸铵-乙腈 的最佳流动相比例。结果发现,乙酸铵-乙腈体 系在不同比例下峰形均前沿较严重,不对称度 <0.85;碳酸氢铵-乙腈(55:45)峰形较好。 但可能由于 Ru 为碱性化合物,易与色谱柱填料 中的残留硅羟基形成氢键,导致峰形出现拖尾 现象。磷酸可以降低流动相的 pH,使碱性化合 物质子化,从而减弱药物与硅羟基之间的相互 作用,改善峰形。本研究加入适量磷酸以改善 峰拖尾情况,最终以含 0.05% 磷酸的 10 mmol/L 碳酸氢铵水溶液 – 乙腈(55:45)作为 HPLC 测 定 Ru 的流动相组成。

3.2 超滤法工艺筛选

在超滤法工艺筛选中,筛选不同截留分子量的超滤管时,常规方法为检测不同超滤管对纳米 粒的截留效果。Ru-SLN粒径大小约为40 nm,3、 10、30 kDa 的超滤离心管平均孔径均<10 nm, 因此理论上均能有效截留纳米粒。本文以超滤液 粒子大小和超滤管截留率分别考察超滤管对纳米 粒的截留能力,以回收率考察超滤管对游离药物 的透过作用,综合筛选最优超滤管。最后在粒径 和透过作用均较优的前提下,选择超滤后粒子浓 度最少的 10 kDa 超滤管。

在超滤法离心转速的筛选中,离心力在 7015~10961×g时,随着离心力的增加,包封 率轻微增大,可能是由于离心力的增加,质量 较大的纳米粒紧贴超滤管内壁,导致游离药物 穿过膜的效率减少,从而包封率增大;而离心 力在10961~15784×g时,随着离心力的增加, 包封率轻微减小,可能是过高的离心力导致膜 破损,使药物泄露,从而包封率减小。

在离心时间的筛选中,离心时间在 30~50 min 时,随着离心时间的增加,包封率也存在轻微增 大。理论上,随着离心时间的增加,包封率应越低, 可能是由于浓度极差导致该现象^[17]。浓度极差是 由于在超滤离心过程中,膜内溶剂和游离药物均 能透过超滤膜,大分子的纳米粒被保留在膜内, 这会导致膜内表面的大分子浓度增加,从而引起 膜内表面的渗透压增大,阻碍溶剂继续向膜外扩 散而降低溶剂和游离药物的透过率。

在试验过程中,还考察了离心时控温与否对 包封率的影响,发现控温所得包封率结果更加稳 定。长时间的离心过程,高速旋转会导致离心机 温度过高,Ru及SLN辅料对热稳定,虽然离心 时控温与否对纳米粒泄露无显著影响,但高温会 使超滤管更易破裂或膜泄露,这提示以超滤离心 法测定药物包封率时,无论药物及辅料是否对热 稳定,都应以控温离心。

3.3 小结

Ru 治疗骨髓纤维化和真性红细胞增多症 早已在临床上表现出显著的治疗作用^[18-19],近 年来的研究也提示该药在皮肤疾病上的显著疗 效^[20-22],在未来将会成为一个被广泛研究的明 星药物。本文以 HPLC 法测定 Ru 的含量,该法 对于 Ru 专属性高,线性范围广,重复性、稳定 性、精密度、回收率较好。结合超滤离心法测定 Ru-SLN 的包封率,测得 Ru-SLN 平均包封率为 (97.01±1.23)%,该法重现性好、准确度高, 是一种具有应用价值的方法,可为未来 Ru 含量 及包封率的测定提供理论依据。

参考文献

- Liu J, Wang F, Luo F. The role of JAK/STAT pathway in fibrotic diseases: molecular and cellular mechanisms[J]. Biomolecules, 2023, 13(1): 119. DOI: 10.3390/ biom13010119.
- 2 Cao Y, Wang J, Jiang S, et al. JAK1/2 inhibitor ruxolitinib promotes the expansion and suppressive action of

polymorphonuclear myeloid–derived suppressor cells via the JAK/STAT and ROS–MAPK/NF–κ B signalling pathways in acute graft–versus–host disease[J]. Clin Transl Immunol, 2023, 12(2): e1441. DOI: 10.1002/cti2.1441.

- 3 Arcaini L, Cazzola M. Benefits and risks of JAK inhibition[J]. Blood, 2018, 132(7): 675-676. DOI: 10.1182/ blood-2018-07-858720.
- 4 Chifotides HT, Masarova L, Verstovsek S. SOHO state of the art updates and next questions: novel therapeutic strategies in development for myelofibrosis[J]. Clin Lymphoma Myeloma Leuk, 2023, 23(4): 219–231. DOI: 10.1016/j.clml.2022.12.014.
- 5 Sheikh A, Rafique W, Owais R, et al. FDA approves ruxolitinib (opzelura) for vitiligo therapy: a breakthrough in the field of dermatology[J]. Ann Med Surg (Lond), 2022, 81: 104499. DOI: 10.1016/j.amsu.2022.104499.
- 6 Rosmarin D, Pandya AG, Lebwohl M, et al. Ruxolitinib cream for treatment of vitiligo: a randomised, controlled, phase 2 trial[J]. Lancet, 2020, 396(10244): 110–120. DOI: 10.1016/S0140–6736(20)30609–7.
- 7 Owji S, Caldas SA, Ungar B. Management of atopic dermatitis: clinical utility of ruxolitinib[J]. J Asthma Allergy, 2022, 15: 1527-1537. DOI: 10.2147/JAA.S342051.
- Zheng C, Tosti A. Alopecia areata: new treatment options including janus kinase inhibitors[J]. Dermatol Clin, 2021, 39(3): 407–415. DOI: 10.1016/j.det.2021.03.005.
- 9 Kaewbanjong J, Amnuaikit T, Souto EB, et al. Antidermatophytic activity and skin retention of clotrimazole microemulsion and microemulsion-based gel in comparison to conventional cream[J]. Skin Pharmacol Phys, 2018, 31(6): 292-297. DOI: 10.1159/000491756.
- 10 Rosita N, Sultani AA, Hariyadi DM. Penetration study of p-methoxycinnamic acid (PMCA) in nanostructured lipid carrier, solid lipid nanoparticles, and simple cream into the rat skin[J]. Sci Rep, 2022, 12(1): 19365. DOI: 10.1038/ s41598-022-23514-0.
- Paliwal R, Paliwal SR, Kenwat R, et al. Solid lipid nanoparticles: a review on recent perspectives and patents[J]. Expert Opin Ther Pat, 2020, 30(3): 179–194. DOI: 10.1080/13543776.2020.1720649.
- 12 Sulaiman KN, Sharma S, Sharma PK, et al. Several applications of solid lipid nanoparticles in drug delivery[J/OL]. Curr Mol Med, 2023-07-20. DOI: 10.2174

/1566524023666230720110351.

- 13 国家药品监督管理局药品审评中心.《纳米药物质 量控制研究技术指导原则(试行)》的通告(2021年 第35号)[EB/OL].(2021-08-27)[2024-08-14].https:// www.cde.org.cn/main/news/viewInfoCommon/95945bb17a 7dcde7b68638525ed38f66.
- 14 张艺,杭太俊,宋敏.载药脂质体包封率测定方法的 研究进展[J].中国药科大学学报,2021,52(2):245-252. [Zhang Y, Hang TJ, Song M. Progress in research on the determination of entrapment efficiency of liposomes[J]. Journal of China Pharmaceutical University, 2021, 52(2): 245-252.] DOI: 10.11665/j.issn.1000-5048.20210214.
- 15 López-Cabeza R, Kah M, Grillo R, et al. Is centrifugal ultrafiltration a robust method for determining encapsulation efficiency of pesticide nanoformulations?[J]. Nanoscale, 2021, 13(10): 5410-5418. DOI: 10.1039/ d0nr08693b.
- 16 Wang J, Wang H, Xu H, et al. Solid lipid nanoparticles as an effective sodium aescinate delivery system: formulation and anti–inflammatory activity[J]. RSC Adv, 2022, 12(11): 6583–6591. DOI: 10.1039/d1ra07638h.
- 17 周恺,姚亮,戴浩志,等.超滤离心法测定银杏 内酯B纳米结构脂质载体包封率[J].安徽中医 药大学学报,2015,34(2):78-81. [Zhou K, Yao L, Dai HZ, et al. Centrifugal ultrafiltration technique for determining entrapment efficiency of ginkgolide B-loaded

nanostructured lipid carriers[J]. Journal of Anhui University of Chinese Medicine, 2015, 34(2): 78–81.] DOI: 10.3969/j.issn.2095–7246.2015.02.023.

- 18 Lee B, Moon H, Chae J, et al. Clinical efficacy of ruxolitinib in patients with myelofibrosis: a nationwide population-based study in korea[J]. J Clin Med, 2021, 10(20): 4774. DOI: 10.3390/jcm10204774.
- 19 Coltoff A, Mesa R, Gotlib J, et al. Real-world outcomes of ruxolitinib treatment for polycythemia vera[J]. Clin Lymphoma Myeloma Leuk, 2020, 20(10): 697-703. e1. DOI: 10.1016/j.clml.2020.05.019.
- 20 Xu C, Lei Z, Wang L, et al. The effect of transplantation of cultured autologous melanocytes on CXCL9, CXCL10 and CXCL11 expressions in vitiligo[J]. Indian J Dermatol, 2023, 68(4): 486. DOI: 10.4103/ijd_925_22.
- 21 Liang J, Yu Y, Li C, et al. Tofacitinib combined with melanocyte protector α-MSH to treat vitiligo through dextran based hydrogel microneedles[J]. Carbohydr Polym, 2023, 305: 120549. DOI: 10.1016/j.carbpol.2023.120549.
- 22 King B, Ko J, Forman S, et al. Efficacy and safety of the oral Janus kinase inhibitor baricitinib in the treatment of adults with alopecia areata: Phase 2 results from a randomized controlled study[J]. J Am Acad Dermatol, 2021, 85(4): 847– 853. DOI: 10.1016/j.jaad.2021.05.050.

收稿日期: 2024 年 06 月 26 日 修回日期: 2024 年 08 月 17 日 本文编辑: 钟巧妮 李 阳