・论著・一次研究・

基于DNA条形码鉴别青葙子与鸡冠花子及其 遗传多样性分析

宋 叶,李国卫,兰小勇,钟春琳,谭斯尹,刘闪闪,潘礼业,陈向东,孙冬梅

广东一方制药有限公司,广东省中药配方颗粒企业重点实验室(广东佛山 528244)

【摘要】目的 应用分子生物学鉴定技术,筛选出应用于鉴定青葙子与鸡冠花子的最 佳 DNA 条形码,建立快速、准确、便捷的青葙属植物鉴定方法。方法 收集青葙子、鸡冠花 子样品共计 21 份,提取样品总 DNA,对内部转录间隔区(ITS)、psbA-trnH、matK、rbcL 和 trnL-trnF 序列进行扩增和测序,采用 MEGA-X 软件对数据进行分析处理,计算 Kimura-2parameter 遗传距离,建立邻接聚类进化树,进行对比分析,基于 TaxonDNA 计算 BestMatch、 BestCloseMatch 以评估 DNA 条形码的鉴别能力,利用 ITS2 数据库和 RNAfold 数据库预测条形 码序列二级结构。结果 条形码 ITS、matK、psbA-trnH、rbcL、trnL-trnF 序列均扩增成功且具 有较高的测序成功率,其中 psbA-trnH 具有最多的变异位点,ITS 次之。psbA-trnH、ITS2、 trnL-trnF 具有较明显的条形码间隙,以 psbA-trnH 最为显著(100%)。系统进化树显示, ITTS、ITS2、psbA-trnH、matK、trnL-trnF 序列均可将青葙子与鸡冠花子各自聚为一支,各分支 点的支持率均高于 60%,以 psbA-trnH、trnL-trnF 的各分支点的支持率最高(99%)。分子方 差分析结果显示 psbA-trnH 序列的群体遗传分化指数最高,适用于区分青葙子和鸡冠花子物种 间差异。除 matK 外,青葙子与鸡冠花子 psbA-trnH、ITS2、trnL-trnF 序列的二级结构均有差异。 结论 以 psbA-trnH 为主、ITS 和 trnL-trnF 为辅,可实现青葙子和鸡冠花子的准确鉴定。

【关键词】青葙子;鸡冠花子;DNA 条形码;物种鉴定;遗传距离;系统发育树分析; 二级结构

【中图分类号】 R282.5 【文献标识码】A

DNA barcode screening and genetic diversity analysis of the Celosiae semen and Celosia cristatae semen

SONG Ye, LI Guowei, LAN Xiaoyong, ZHONG Chunlin, TAN Siyin, LIU Shanshan, PAN Liye, CHEN Xiangdong, SUN Dongmei

Guangdong Yifang Pharmaceutical Co.,Ltd., Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Formula Granule, Foshan 528244, Guangdong Province, China Corresponding author: PAN Liye, Email: panliye@live.cn

【Abstract】Objective To screen the optimal DNA barcode for identifying Celosiae semen and Celosia cristatae semen using the molecular biology identification techniques, and to establish a rapid, accurate, and convenient approach for identifying species in the *Celosia* L.. Methods A total of 21 samples of Celosiae semen and Celosia cristatae semen were collected, and total DNA was extracted from the samples. The sequences of ITS, psbA-trnH, matK, rbcLand trnL-trnF were amplified and

DOI: 10.12173/j.issn.2097-4922.202406092

基金项目:佛山市南海区重点领域科技攻关项目(南科 [2023]20号-18);产业技术基础公共服务平台项目(2022-230-221)

通信作者:潘礼业,硕士,副主任中药师,Email: panliye@live.cn

sequenced, MEGA-X software was used to analyze and process the data, the Kimura-2-parameter genetic distance was calculated, an neighbor-joining method cluster evolutionary tree was established, and the comparative analysis was conducted. The BestMatch and BestCloseMatch was calculate based on TaxonDNA to evaluate the discriminative ability of DNA barcodes. The ITS2 database and RNAfold database were used to predict the secondary structure of the barcode sequence. **Results** The barcode ITS, matK, psbA-trnH, rbcL, and trnL-trnF sequences were successfully amplified and had high sequencing success rates. Among them, the psbA-trnH had the most mutation sites, followed by ITS. The psbA-trnH, ITS2 and trnL-trnF had significant barcoding gap, and psbA-trnH was the most significant (100%). According to the phylogenetic tree, the IITS, ITS2, psbA-trnH, matK and trnL-trnF sequences could cluster Celosiae semen and Celosia cristatae semen into a separate branch, the support rates of each branch point were above 60%, with psbA-trnH had the highest population genetic differentiation index and was the most suitable for distinguishing differences between Celosiae semen and Celosia cristatae semen. Except for matK, there were differences in the secondary structure of psbA-trnH as the main component ITS and trnL-trnF as the auxiliary ones, accurate identification of Celosiae semen and Celosia cristatae semen can be achieved.

(Keywords) Celosiae semen; Celosia cristatae semen; DNA barcode; Species identification; Genetic distance; Phylogenetic analysis; Secondary structure

青葙属 Celosia L. 为苋科植物中的一类, 约 60种,分布于非洲、美洲和亚洲亚热带和温带 地区,我国产3种:青葙Celosia argentea L.、 鸡冠花 Celosia cristata L. 和台湾青葙 Celosia taitoensis Hayata。青葙,别名野鸡冠花、指天笔、 牛尾巴花等, 苋科青葙属1年生草本植物, 子实 入药,具有清肝泻火、明目退翳等功效,用于治 疗肝热目赤、目生翳膜、视物昏花、肝火眩晕等 疾病¹¹。鸡冠花,别名鸡公花、老来少、鸡髻花 等,为苋科青葙属1年生草本植物,源自亚洲热 带和非洲地区,目前在我国已大面积种植。其花、 茎叶、籽均可入药,具有收敛止血、止带、止痢 等功效,用于治疗吐血、崩漏、便血、痔血、赤 白带下、久痢不止等疾病[1]。青葙子在我国分布 广泛,同属植物鸡冠花子和苋属多种植物的干燥 成熟种子与青葙子在性状上极为相似,种子细小 且难以区分,且由于各地用药习惯的影响而误收 误用,造成了目前青葙子药材品种混乱,质量低 劣等问题。利用传统的基原鉴定和性状鉴定难以 准确快速地进行鉴别,因此,需要建立一种通用、 快速、准确的青葙属药材方法。

随着分子生物学技术的发展,免疫鉴定法、 特异聚合酶链式反应(polymerase chain reaction, PCR)标记法、生物效价测定法和 DNA 条形码等 生物学鉴定方法在中药材鉴定领域应用越来越广 泛,其中 DNA 条形码鉴定技术的出现,开启了中 药材分子鉴定的新篇章。该技术能够在不受样本形 态影响的情况下,通过分子生物学方法,从基因层 面比较 DNA 序列的差异,从而最大限度地减少人 为自主因素的影响, 使鉴定结果更加准确, 已实 现中药鉴定的自动筛选与规范化^[2]。《中国药典》 测序技术指导原则中,将植物类药材的主序列定 为内部转录间隔区2(internal transcribed spacer 2, ITS2),辅助序列为 psbA-trnH,将动物药材主序 列定为细胞色素 c 氧化酶亚基 I, 以 ITS2 为辅助序 列, 生命条形码联盟植物工作组基于大量实验推荐 采用双基因组合"rbcL+matK"作为陆生植物鉴定 的 DNA 条形码^[3-4]。目前鸡冠花子和青葙子的鉴别 主要为传统鉴别方法,即性状鉴别和显微鉴别[5-8], 此二者外观性状极为相似,采用传统鉴别方法对其 性状完整性要求较高,而中药 DNA 分子鉴别方法 不受样品形态限制,原药材及其粉末均可应用。

目前对青葙属植物研究多集中于化学成分及 药效学研究部分,关于 DNA 分子鉴别研究方面 鲜少有报道。本文本研究选取 ITS、ITS2、psbAtrnH、matK、rbcL 和 trnL-trnF 等 6 个常用的植物 DNA 条形码序列,评估其对鸡冠花子和青葙子的 分子鉴定效率,筛选适用于鸡冠花和青葙鉴定的 DNA 条形码序列,并进一步分析二者的遗传多样 性,验证 DNA 条形码序列筛选的可靠性。

1 材料与方法

1.1 仪器

ME204E型万分之一电子天平[梅特勒-托 利多仪器(上海)有限公司];5425R型冷冻离 心机(德国 Eppendorf);BLF-P25型微孔板迷 你离心机(上海一恒科技有限公司);BioSpecnano型紫外微量分光光度计(日本岛津);T100 型 PCR 仪(美国 Bio-Rad);Vortex型涡旋仪(上 海达姆实业有限公司);Owl Easy Cast B2型电泳 仪(美国 ThermoFisher Scientific);NuGenius XE 多功能凝胶成像系统(瑞士 NuGenius)。

1.2 主要药品与试剂

琼脂糖(批号: S14003)和 GelRed 染料(批 号: S24647)购自上海源叶生物科技有限公司; DNA Maker DL1000(批号: 3591A)、DNA Maker DL2000(批号: 3427A)和 Mighty AMP DNA 聚合 酶(批号: R071A)购自 TaKaRa; 高效植物基因 组 DNA 提取试剂盒[天根生化科技(北京)有限 公司,批号: DP350];引物由生工生物工程(上海) 股份有限公司合成。

本试验收集 21 份样品,经广东一方制药有限 公司潘礼业副主任中药师鉴定为青葙子和鸡冠花 子,其中 S1~S13 为苋科植物鸡冠花子,S14~S21 为苋科植物青葙子。药材标本保存于广东一方制 药有限公司样品管理室,样品信息见表 1。

1.3 方法

1.3.1 样品DNA提取、PCR扩增和测序

分别取鸡冠花和青葙花干组织适量,于 2.0 mL离心管中,置于研磨仪中研碎,取上述研 碎粉末 30 mg,研磨后置于 2.0 mL离心管中,然 后用植物基因组 DNA 试剂进行总 DNA 的提取, 超微分光光度计检测其纯度和浓度,-20 ℃储藏 备用。

PCR 扩 增: ITS、psbA-trnH、matK、rbcL、 trnL-trnF 序列的扩增引物和 PCR 程序见表 2。 基因片段的 PCR 扩增在 PCR 仪上完成。反应体 系为 50 µL,包括 2 µL DNA 模板,25 µL 2 × PCR Buffer,0.5 µL 的 2.5 U/µL Mighty AMP,21.5 µL ddH₂O,10 µmol/L 正反扩增引物各 0.5 µL。PCR 扩增反应条件为:95 ℃预变性 5 min;95 ℃变性 30 s,48 ℃ 退火 30 s,72 ℃延伸 45 s,共5 个循环; 95 ℃变性 30 s,48 ℃退火 30 s,72 ℃延伸 45 s,

表1 青葙子和鸡冠花子样品信息

Table 1.	Sample	collection	information	table	of Celo	siae
	semen	and Celos	sia cristatae	seme	n	

序号	批号	物种	产地
1	JGH-1	鸡冠花子	河北省保定市
2	JGH-2	鸡冠花子	河北省保定市
3	JGH-3	鸡冠花子	河北省保定市
4	JGH-4	鸡冠花子	河北省保定市
5	JGH-5	鸡冠花子	河北省保定市
6	JGH-6	鸡冠花子	河北省保定市
7	JGH-7	鸡冠花子	河北省保定市
8	JGH-8	鸡冠花子	河北省保定市
9	JGH-9	鸡冠花子	河北省保定市
10	JGH-10	鸡冠花子	安徽省毫州市
11	JGH-11	鸡冠花子	江苏省宿迁市
12	JGH-12	鸡冠花子	江苏省宿迁市
13	JGH-13	鸡冠花子	江苏省宿迁市
14	QXH-17	青葙子	广东省茂名市
15	QXH-18	青葙子	广西钦州市浦北
16	QXH-19	青葙子	河南平顶山市
17	QXH-20	青葙子	广西南宁铜鼓岭
18	QXH-21	青葙子	广西南宁铜鼓岭
19	QXH-22	青葙子	广东省茂名市
20	QXH-23	青葙子	河南平顶山市
21	QXH–24	青葙子	广西钦州市浦北

表2 PCR扩增引物及扩增程序

Table 2. I	Table 2. DNA barcode primer and amplification program					
条形码	引物名称	序列				
ITS	ITS2-1	ATGCGATACTTGGTGTGAAT				
	ITS2-2	GACGCTTCTCCAGACTACAAT				
psbA-trnH	psbA-trnH-1	GTTATGCATGAACGTAATGCTC				
	psbA-trnH-2	CGCGCATGGTGGATTCACAATCC				
MatK	MatK-3F	CGTACAGTACTTTTGTGTTTACGAG				
	MatK-1R	ACCCAGTCCATCTGGAAATCTTGGTTC				
rbcL	rbcL-F	ATACATGTCAAAGTGATGGAAAA				
	$\rm rbcL-724R$	TCGCATGTACCTGCAGTAGC				
trnF-trnL	trnF-R	ATTTGAACTGGTGACACGAG				
	trnL-F	CGAAATCGGTAGACGCTACG				
	14 1-0 3 10					

1.3.2 数据分析

测序后得到的原始序列测序结果通过 Bioedit 进行测序质量判断,对于结果中的峰重叠区 域大于 50% 的序列不列入分析,测序结果通 过 Seqman 软件进行拼接,所得序列通过 NCBI (https://blast.ncbi.nlm.nih.gov/Blast.cgi)根据得分 来进行 Blast 序列相似性比对。采用 HMMer 注释 方法从 ITS 序列中提取各样品的 ITS2 序列。采 用 MEGAX 软件进行多重比对,获得各 DNA 条 形码候选序列的特征和变异位点信息。基于 K2P (Kimura-2-parameter)双参数模型计算种内和种 间遗传距离;采用邻接法构建系统进化树;并根 据 Bootstrap(1000 次重复)检验各分支的支持率。 对 ITS2 的二级结构进行预测(http://its2.bioapps. biozentrum.uni-wuerzburg.de/),采用 RNAfold 对 psbA-trnH、matK、trnL-trnF 序列进行二级结构 预测,采用 Arlequin3.5 软件进行各条形码序列的 分子方差分析。采用 TaxonDNA 软件的"BestMatch (BM)""BestClosedMatch(BCM)"功能计算 青葙属各条形码的鉴别成功率,并以此作为 DNA 条形码鉴别能力的指标之一。

2 结果

2.1 扩增成功率和测序成功率

本研究所有样品的条形码 ITS、psbA-trnH、 matK、rbcL、trnL-trnF 序列进行 PCR 扩增,并 采用凝胶电泳对扩增序列进行检验。按"扩增产 物有明亮单一电泳条带"的标准统计扩增成功 率,按"扩增产物经测获得高质量样本"的标准 计算测序成功率。结果显示,ITS、psbA-trnH、 matK、rbcL、trnL-trnF 扩增成功率均为100%。 测序成功率分别为100%、95%、100%、95%、 81%。扩增电泳图见图 1。

2.2 物种鉴定能力评估

对 123 条序列在 GenBank 数据库中运用 BLAST 方法进行序列比对,比对率超过 99% 的视为鉴定到 物种水平(对同一物种的多个样本取平均值)。结 果显示,ITS、psbA-trnH、matK、trnF-trnL序列青 葙子和鸡冠花子比对率均可达 99.0% 以上。

采用 TaxonDNA 软件的 BM、BCM 功能计算 各条形码的鉴别成功率。结果显示, BM 中 matK 和 trnF-trnL 的鉴别成功率最高(100.00%), ITS(95.00%)和 psbA-trnH(94.73%)次之, 由于 rbcL 序列不能区分青葙花和鸡冠花, 因此 鉴别效率为 0%。在 BCM 中 matK 的鉴别成功率 最高(100.00%), ITS(95.00%)和 psbA-trnH (94.73%)次之,与 BM 结果保持一致,但 trnFtrnL 的鉴别效率降至 89.47%,其原因为 trnF-trnL 在 BCM 分析中部分序列超过阈值 5% 被归为"no% match"。各条形物种鉴定率见表 3。

amplified products

注:M. DNA Maker DL1000、DNA Maker DL2000;1-13. 鸡冠花子 S1~S13;14-21. 青葙子S17~S24;N. ddH2O。

表3 各条形物种鉴定	率
------------	---

Table 3. Ident	ification rate	e of various	DNA ba	r species
----------------	----------------	--------------	--------	-----------

冬形起	最佳匹配方法	基于阈值的最佳匹配方法
示心吗	(BM, %)	(BCM, %)
ITS	95.00	95.00
psbA-trnH	94.73	94.73
matK	100.00	100.00
trnL	100.00	89.47
rbcL	0	0

2.3 序列特征和变异位点分析

本研究共获得青葙属 2 个物种 21 个样品的 ITS2、ITS、psbA-trnH、matK、rbcL、trnL-trnF 序 列共 123 条序列, 6 个条形码候选序列的序列特征 及变异位点信息见表 4, 从表可以看出 ITS、ITS2、 psbA-trnH、matK、rbcL、trnL-trnF 的一致性序列长 度分别为448、215、638、758、595、953,GC含量变幅分别为55.18%~56.05%、56.74%~55.61%、24.46%~25.31%、35.22%~35.25%、43.00%、31.93%~31.50%。在6个条形码候选序列中,变异

位点、简约信息位点和单一多态位点的占比均为 psbA-trnH 最高、rbcL 最低,2 倍简并位点占比最 高是 trnL-trnF、最低是 ITS2,4 倍简并位点占比最 高为 ITS2、最低为 psbA-trnH。

Table 4. Sequence characteristics of six candidate barcodes in medicinal plants of Celosia L.								
项目	ITS	ITS2	psbA–trnH	matK	rbcL	trnL–trnF		
一致性序列长度 (bp)	448	215	638	758	595	953		
保守位点								
А	435	211	577	748	593	929		
Р	97.10	98.14	90.44	98.68	99.66	97.48		
变异位点								
А	12	4	39	9	0	5		
Р	2.68	1.86	6.11	1.19	0.00	0.52		
简约信息位点								
А	9	4	21	3	0	5		
Р	2.01	1.86	3.29	0.40	0.00	0.52		
单一多态性位点								
А	3	0	18	6	0	0		
Р	0.67	0.00	2.82	0.79	0.00	0.00		
2倍简并位点								
А	85	26	152	195	116	235		
Р	18.97	12.09	23.82	25.73	19.50	24.66		
4倍简并位点								
А	69	44	50	74	91	84		
Р	15.40	20.47	7.84	9.76	15.29	8.81		
T+A变幅(%)	43.95~44.82	43.26~44.39	75.53~73.69	64.78~64.74	57.00	68.07~68.50		
G+C变幅(%)	55.18~56.05	56.74~55.61	24.46~25.31	35.22~35.25	43.00	31.93~31.50		

表4 青葙属药用植物6个条形码候选序列特征

注:A和P分别指数目和所占比例。

2.4 种内和种间遗传距离分析

基于 ITS、ITS2、psbA-trnH、matK、rbcL、 trnL-trnF 序列的种内和种间的遗传距离见表 5, 遗传距离分布柱状图见图 2。结果显示,鸡冠花 子与青葙子除 rbcL 序列,其余条形码种内遗传 距离平均值均小于种间遗传距离平均值。6个条 形码序列的种内变异按遗传距离平均值排序依次 为: psbA-trnH>ITS>matK>ITS2=trnL-trnF> rbcL。6个条形码候选序列的种间变异按遗传距 离平均值排序依次为: psbA-trnH>ITS>ITS2> trnL-trnF>matK>rbcL。各条形码中每条序列对 应的最大种内距离数值小于其最小种间距离的数 据个数与总序列数的比值代表该条形码的条形码 间隙(Barcoding gap)的显著程度,比值越大则 该条形码 Barcoding gap 越显著。以 psbA-trnH 序 列的Barcoding gap(100.00%)最显著;随后依 次 为 trnL-trnF (94.70%) > ITS2 (75.00%) > ITS(45.00%)>matk(4.76%)。从图2可以看 到 ITS、matK 序列的种内和种间遗传变异重叠比 例较高,psbA-trnH 序列种间遗传变异和种内遗 传变异重叠比例较小,ITS2、trnL-trnF 序列种间 遗传变异和种内遗传变异无明显重叠。故psbAtrnH、ITS2、trnL-trnF 序列可作为鉴别鸡冠花子 和青葙子的核心条形码之一。

2.5 系统发育树分析

一般说来,碱基转换发生的频率高于颠换, 但是随物种分歧程度的增加,转换(ISS)/颠换 (ISS.C)的比率接近或小于1,说明转换可能已 经趋于饱和并可能成为进化杂音,故转换和颠换 发生的频率与序列间分歧度的关系就可以反映出 碱基替换是否受饱和效应的影响。采用 DANBE 软件分别对 ITS、ITS2、psbA-trnH、matK、trnLtmF5 个条形码序列片段的碱基替换模式进行检 测,结果见表 6,以上 5 个条形码序列 ISS 均大 于 ISS.C 值,即均不受饱和效应影响,可进行系 统进化树分析。

条形码	全部样品种内K2P距离(平均(直) 种间K2P距离(平均值)	Barcoding gap (%)
ITS	0.000 0~0.016 1 (0.003 2)	0.002 2~0.016 1 (0.081)	45.00
ITS2	0.000 0~0.009 5 (0.000 1)	0.004 7~0.014 2 (0.075)	75.00
psbA–trnH	0.000 0~0.014 0 (0.003 7)	0.007 9~0.026 1 (0.019 8)	100.00
matK	0.000 0~0.002 8 (0.000 5)	0.001 4~0.004 1 (0.001 9)	4.76
rbcL	0.000 0	0.000 0	0.00
trnL–trnF	0.000 0~0.001 1 (0.000 1)	0.004 4~0.005 5 (0.004 8)	94.70
A 40 30- 20- 5 10- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	种内遗传距离 利用遗传距离 利用遗传距离 10 10 10 10 10 10 10 10 10 10	C 和内遗传距离 种间遗传距离 0 0 0 0 0 0 0 0 0 0 0 0 0	50 种内遗传距离 40 种问遗传距离 30 20 0 0 0 0 0 0 0 0 0 0 0 0 0
	D 80 60 60 60 60 60 60 60 60 60 60 60 60 60	神内遗传距离 E 神向遗传距离 (100 (种内遗传距离 种间遗传距离 种间遗传距离 ¹⁰¹ ¹⁰⁰ ¹⁰⁰

表5 基于6个条形码候选序列计算的种内和种间遗传距离

Table 5. Intra-and inter-specific genetic distances of six candidate barcodes

表6 替换饱和性检验 Table 6. Replacement saturation test ITS ITS2 psbA-trnH matK trnF-

项目	ITS	ITS2	psbA-trnH	matK	trnF-trnI
ISS	0.004 8	0.007 5	0.014 8	0.002	0.002 7
ISS .c	0.723 4	0.74 8	0.718 8	0.7451	0.758 1
Prob (Two-tailed)	0.000 0	0.000 0	0.000 0	0.0000	0.000 0

采用 MEGA7.0 软件基于 K2P 计算模型构建青 葙子、鸡冠花子样品的 IITS、ITS2、psbA-trnH、 matK、trnL-trnF序列的邻接系统发育树。若同一 物的所有个体形成一个单系,且分支点支持率大 于 50%,则认为该物种被准确鉴定。以上 5 种条 形码序列均可将青葙子和鸡冠花子各自聚为一支, 各分支点的支持率均高于 60%,以 psbA-trnH、 trnL-trnF 的各分支点的支持率最高(99%),其 次为 matK(66%),ITS2 的邻接树中,鸡冠花子 分支支持率为 80%,青葙子分支支持率为 62%, ITS 的邻接树中,鸡冠花子分支支持率为 62%,青 葙子分支支持率为 60%。可见上述 5 种条形码邻 接树的区分能力方面,以 psbA-trnH、trnL-trnF 序 列最强, matK、ITS2、ITS 序列水平相差不大。具体见图 3。

2.6 分子方差分析

基于 5 个条形码序列进行分子方差分析, 结果显示,种群间(种间)变异和种群内(种 内)个体间变异对遗传差异均有极显著影响(*P* <0.01)。基于 ITS2、ITS、psbA-trnH、matK、 trnL-trnF 序列的群体遗传分化指数均较高,种间 变异分别占 72.33%、58.41%、75.56%、42.75%、 61.85%,种内变异分别占 27.77%、41.59%、 24.44%、57.25%、38.15%,表明 5 个序列的种间 或种内分子多样性均较高,其中 psbA-trnH 序列 的种间变异百分率最高,最适用于区分青葙子和 鸡冠花子的种间差异。具体见表 7。

2.7 二级结构预测分析

根据ITS2数据库预测的ITS2二级结构见图4。 由图可以看出,青葙子与鸡冠花子的ITS2二级结 构均由1个中心环和4个螺旋区(I、Ⅱ、Ⅲ、Ⅳ

图3 基于ITS2(A)、ITS(B)、psbA-trnH(C)、matK(D)、trnL-trnF(E)序列 构建青葙子、鸡冠花子植物邻接树

Figure 3. Construction of neighbor–joining trees of Celosiae semen and Celosia cristatae semen plants based on ITS2 ITS2(A), ITS(B), psbA–trnH(C), matK(D) and trnL–trnF (E) sequences

表7 5个条形码候选序列分子方差分析

Table 7. Moleci	ular variation	analysis of	variance of	f five candio	date barcodes
-----------------	----------------	-------------	-------------	---------------	---------------

条形码	变异来源	自由度	方差平方和	方差分量	变异百分率(%)	Р	群体遗传
ITS2	种群间	1	13.04	0.701 65	72.23	< 0.001	0.722 34
	种内间	38	10.249	0.269 71	27.77	< 0.001	
	总计	39	23.289	0.971 36	—	—	
ITS	种群间	1	13.298	0.703 12	58.41	< 0.001	0.584 06
	种内间	38	19.027	0.500 72	41.59	< 0.001	
	总计	39	32.325	1.203 84	—	—	
psbA-trnH	种群间	1	560.285	29.723 65	75.56	< 0.001	0.755 59
	种内间	36	346.136	9.614 90	24.44	< 0.001	
	总计	37	906.421	39.338 55	—	—	
matK	种群间	1	12.415	0.587 03	42.75	< 0.001	0.427 53
	种内间	40	31.442	0.786 06	57.25	< 0.001	
	总计	41	43.857	1.373 09	—	—	
trnL-trnF	种群间	1	52.545	2.963 99	61.85	< 0.001	0.618 54
	种内间	34	62.149	1.827 92	38.15	< 0.001	
	总计	35	114.694	4.791 91	—	—	

区)组成。鸡冠花子中心环大于青葙子,青葙子 螺旋区 III 经环数为5个,鸡冠花子为4个。根据 RNAfold 预测青葙子与鸡冠花子 psbA-trnH、 matK、trnL-trnF序列的二级结构,结果见图 5~ 图 7。psbA-trnH 二级结构由 1 个中心环和 6 个螺 旋区(I、II、III、III、IV、V、VI区)组成,主要差 异在螺旋区 II、III、VI。matK 二级结构无差别, trnL-trnF 二级结构由 1 个中心环和 3 个螺旋区, 差异主要表现为茎环数目、位置、大小和螺旋发 出时角度的不同。

图4 青葙子与鸡冠花子ITS2序列二级结构 Figure 4. Secondary structure of ITS2 sequence of Celosiae semen and Celosia cnstatae.

图5 青葙子与鸡冠花子psbA-trnH序列二级结构 Figure 5. Secondary structure of psbA-trnH sequence of Celosiae semen and Celosia cnstatae.

图6 青葙子与鸡冠花子matK序列二级结构 Figre 6. Secondary structure of matK sequence of Celosiae semen and Celosia cnstatae.

图7 青葙子与鸡冠花子trnL-trnF序列二级结构 Figure 7. Secondary structure of trnL-trnF sequence of Celosiae semen and Celosia cristatae.

3 讨论

本试验选用5个条形码(ITS、psbA-trnH、matK、rbcL、trnL-trnF)筛选鉴定青葙子与鸡冠

花子的最佳 DNA 条形码,所采集的 21 份样品 中,5个条形码均 PCR 扩增成功且具有较高的测 序成功率。在本研究评价体系中,理想的 DNA 条形码序列应具有明显的种间变异和较小的种内 变异,即具有显著的 Barcoding gap 且 BM、BCM 中获得较高的鉴定成功率,同时该条形码所建立 的系统发育树能将青葙子与鸡冠花子分开且单独 聚为一支。DNA 条形码可分为核糖体基因片段 (如 ITS)和叶绿体基因片段(如 matK、psbAtmH、rbcL、tmL-tmF)。核糖体基因片段 ITS 序列由 ITS1、5.8S 基因、ITS2 区序列构成,较 ITS2 序列具更多的变异位点。本研究显示 ITS 在 青葙属植物鉴别中,其变异位点在 5 个条形码中 居于第 2 (2.68%),物种鉴定效率为 95%,但其 Barcoding gap 较显著(45%)。

植物细胞内不同核糖体的进化水平可能存在 差异, 扩增产物可能被细菌、真菌等微生物的核 糖体污染等,而叶绿体在结构、序列上相对保守, 进化水平一致。psbA-trnH 位于叶绿体基因 psbA 和 trnH 基因的间隔区(非编码区),两段存在 保守序列,具有较快的进化速率¹⁹。但该片段不 同物种间间隔区的长度或拷贝的变异性较大, 序列长度变化区间为 296~1 120 bp, 且部分物种 的 psbA-trnH 序列具有 poly A/T 结构,使得该片 段不能得到广泛应用。本研究采用 psbA-trnH 条 形码对青葙子与鸡冠花子进行测序鉴定,其扩增 率为100%,测序成功率95%,变异位点占比最 高 6.11%, 物种鉴别成功率为 100%, 具有显著的 Barcoding gap(100.00%),所构建的进化树可将 青葙子与鸡冠花子区分,二级结构上螺旋区二者 有明显区别。

matK 基因是叶绿体赖氨酸 tRNA 基因高度保 守的 2 个外显子之间的内含子序列,为单拷贝编 码基因,其进化速率介于 ITS 和 rbcL 之间^[10]。本 试验中扩增得到的 matK 序列为 758 bp,变异位 点占 1.19%,物种鉴别率可达 100%,所构建的进 化树可将青葙子与鸡冠花子区分,但其 Barcoding gap(除 rbcL 序列)最低(4.76%),二级结构 上二者表达一致。因此在青葙子与鸡冠花子 DNA 条形码鉴别应用中非首选条形码。

rbcL位于叶绿体基因组大单拷贝区,编码1,5-二磷酸核酮糖羧化酶/氧化酶大亚基,在不同的 植物类群中其进化速率不同,具有易扩增、易比 对的优点。由于该序列物种变异水平不显著,导 致物种难以进行有效鉴别^[11]。本研究采用 rbcL 序列对青葙属植物进行鉴别,发现其扩增率可达 100%,但青葙子与鸡冠花子两个物种的 rbcL 序 列呈现一致。因此 rbcL 序列不能用于区分青葙子 与鸡冠花子。

trnL-trnF 序列位于叶绿体基因 trnL 内含子和 trnL-F基因的间隔区,在进化上具有选择压力小 和进化速率较快的特点。目前 trnL-trnF 条形码已 被广泛用于植物属间、种间关系的鉴别^[12-14]。本 研究采用trnL-trnF条形码对青葙属植物进行鉴别, 其扩增率可达100%,测序成功率较低(81%), 变异位点占比 0.52%, 物种鉴别成功率 BM 为 100%, BCM 为 89.47%, 具有显著的 Barcoding gap(94.70%),所构建的进化树可将青葙子与鸡 冠花子区分,其二级结构在茎环数目、位置、大 小和螺旋发出时角度有明显区别。综上所述,本 课题组推荐使用 psbA-trnH 条形码作为鉴别青葙 子与鸡冠花子首先序列,以ITS和trnL-trnF为辅 助序列,以上序列能提供较多的遗传信息以准确 鉴定青葙子与鸡冠花子,为青葙属药材的种类鉴 定和种间分类地位提供分子生物学依据。

参考文献

- 1 中国药典 2020 年版. 一部 [S]. 2020: 203, 207.
- 2 田荣,吴云,谷巍,等.基于 ITS2 序列的海桐皮及其混伪品 DNA 分子鉴定 [J]. 中草药,2021,52(1):211-218. [Tian Q, Wu Y, Gu W, et al. Molecular identification of Erythrinae cortex and its adulterants based on ITS2 sequence[J]. Chinese Traditional and Herbal Drugs, 2021, 52(1):211-218.] DOI: 10.7501/j.issn.0253-2670.2021.01.025.
- 3 CBOL Plant Working Group. A DNA barcode for land plants[J]. Proc Natl Acad Sci USA, 2009, 106(31): 12794–12797. DOI: 10.1073/pnas.0905845106.
- 4 中国药典 2020 年版. 四部 [S]. 2020: 492.
- 5 谭新宁. 细小果实种子类中药青葙子鉴定方法的系统研究 [D]. 广州: 广州中医药大学, 2021. DOI: 10.27044/d.enki. ggzzu.2021.000081.
- 6 谭新宁,吴文如,来慧丽,等.基于中药系统鉴定法进行青葙 子药材的鉴别研究[J].中药材,2020,43(2):296-302.[Tan XN, Wu WR, Lai HL, et al. Identification of Celosia argentea based on Systematic Identification of Traditional Chinese Medicine[J]. Journal of Chinese Medicinal Materials, 2020, 43(2): 296-302.] DOI: 10.13863/j.issn1001-4454.2020.02.008.

- 7 陈龙,梁子宁,朱华,等.鸡冠花的生药学研究[J].广西中医药,2014,37(5):69-70. [Chen L, Liang ZN, Zhu H, et al. Pharmacognosy study of Chicken crown flower[J]. Guangxi Journal of Traditional Chinese Medicine, 2014, 37(5):69-70.] DOI: CNKL:SUN:GXZY.0.2014-05-032.
- 8 马新国. 青葙子与鸡冠花子及苋菜子的比较[J]. 海峡 药学, 2012, 24(6): 27-30. [Ma XG. Comparison of Celosia argentea, Celosia cristata, and Amaranthus tricolor seed[J]. Strait Pharmaceutical Journal, 2012, 24(6): 27-30.] DOI: 10.3969/ j.issn.1006-3765.2012.06.010.
- 9 蔡金龙,谢世清,张广辉,等.药用植物 DNA 条形码鉴定 研究进展 [J]. 植物科学学报,2017,35(3):452-464. [Cai JL, Xie SQ, Zhang GH, et al. Current advances in DNA barcoding of medicinal plants[J]. Plant Science Journal, 2017, 35(3):452-464.] DOI: 10.11913/PSJ.2095-0837.2017.30452.
- 10 龙炳宏,蒋向辉,宋荣,等. DNA 条形码在黄精属药用植物鉴 定与遗传多样性分析中的应用 [J]. 植物科学学报,2022,40(4): 533-543. [Long BH, Jiang XH, Song R, et al. Application of DNA barcodes in identification and genetic diversity analysis of medicinal plants of the genus Polygonatum[J]. Plant Science Journal, 2022, 40(4): 533-543.] DOI: 10.11913/PSJ.2095-0837.2022.40533.
- 11 蔡一鸣,代江鹏,郑雨欣,等.钩藤属植物分子鉴定的 DNA 条形码筛选[J].中草药,2022,53(6):1828-1837. [Cai YM, Dai JP, Zheng XY, et al. Screening of DNA barcoding sequences for molecular identification of Uncaria genus[J]. Chinese Traditional and Herbal Drugs, 2022, 53(6):1828-1837.] DOI: 10.7501/j.issn.0253-2670.2022.06.026.
- 12 杨晓娟, 苗艺明, 韦秋思, 等. 基于 trnL-trnF 序列的广西 香木莲遗传多样性分析 [J/OL]. 分子植物育种, 2023-07-28. [Yang XJ, Miao YM, Wei QX, et al. tic d Geneiversity of Manglietia aromatic in Guangxi based on chloroplast trnL-trnF region[J/OL]. Molecular Plant Breeding, 2023-07-28.] http://kns. cnki.net/kcms/detail/46.1068.s.20230727.1407.002.html.
- 13 王崇, 焦春海, 杨新笋, 等. 基于叶绿体基因 trnL-trnF、trnHpsbA 和 trnT-trnL 序列的甘薯种质遗传多样性分析 [J]. 南方农 业学报, 2021, 52(6): 1536–1544. [Wang C, Jiao CH, Yang XS, et al. Genetic diversity analysis of sweet potato based on chloroplastgenes trnL-trnF, trnH-psbA and trnT-trnL sequences[J]. Journal of Southern Agricultur, 2021, 52(6): 1536–1544.] DOI: 10.3969/ j.issn.2095–1191.2021.06.013.
- 14 赵晶晶,黄瑜,张德全,等.基于叶绿体基因 tmL-tmF序 列的滇重楼谱系地理学研究 [J].中国中药杂志,2021,46(5): 1094-1101. [Zhao JJ, Huang Y, Zhang DQ, et al. Phylogeography of Paris poliphylla var. yunnanensis basedon chloroplast gene tmL-tmF sequences[J]. China Academic Journal Electronic Publishing House, 2021, 46(5): 1094-1101.] DOI: 10.19540/ j.enki.ejemm.20201011.102.

收稿日期: 2024 年 06 月 17 日 修回日期: 2024 年 08 月 19 日 本文编辑: 钟巧妮 李 阳