Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 29,2025 No.8 Detail

Multi-target regulatory network and screening of core components of classical traditional Chinese medicine against rheumatoid arthritis

Published on Sep. 01, 2025Total Views: 223 times Total Downloads: 35 times Download Mobile

Author: ZHU Shanshan ZHOU Junting WU Ting

Affiliation: Department of Pharmacy, Lishui People's Hospital, Lishui 323000, Zhejiang Province, China

Keywords: Rheumatoid arthritis Network pharmacology Core active components GO functional analysis KEGG pathway enrichment analysis Multi-targets

DOI: 10.12173/j.issn.2097-4922.202504076

Reference: ZHU Shanshan, ZHOU Junting, WU Ting. Multi-target regulatory network and screening of core components of classical traditional Chinese medicine against rheumatoid arthritis [J]. Yaoxue QianYan Zazhi, 2025, 29(8): 1280-1287. DOI: 10.12173/j.issn.2097-4922.202504076.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Objective  To investigate the medication patterns and formulation characteristics of classical traditional Chinese medicine (TCM) prescriptions for rheumatoid arthritis (RA) treatment and to elucidate the mechanisms of their core active compounds using network pharmacology.

Methods   Five classical TCM prescriptions commonly used in RA treatment were selected, which were Mahuang Jiazhu decoction, Guizhi Shaoyao Zhimu decoction, Xuanbi decoction, Duhuo Jisheng decoction, and Bushen Quhan Zhiwang decoction. Active compounds were screened using the TCMSP database to predict potential targets, and RA-related disease target genes were obtained from the GeneCards database. Common targets among the five prescriptions as well as drug-disease intersection targets were dentified by Venn analysis. A protein-protein interaction (PPI) network was constructed using the STRING database, and key regulatory targets were identified based on topological parameters. GO and KEGG pathway enrichment analyses were conducted in R 4.4.2 to elucidate the mechanisms of action.

Results  The five prescriptions contained a total of 37 Chinese herbal medicines, from which 287 active compounds were identified after deduplication, corresponding to 695 potential targets. The top five most frequently occurring active compounds were β-sitosterol, stigmasterol, kaempferol, quercetin, and catechin. A total of 199 common targets were obtained from the five prescriptions, and 4,210 RA-related targets were retrieved, with 140 overlapping drug-disease targets identified. The compounds with the highest degrees were quercetin, luteolin, kaempferol, wogonin, and β-sitosterol, while the core targets included AKT1, TNF, IL6, TP53, and IL1B. GO enrichment analysis indicated that these targets are primarily involved in biological processes such as response to xenobiotic stimulus, response to molecular stimulus, kinase regulator activity, and cellular membrane and vesicle functions. KEGG enrichment analysis revealed that the main pathways involved include the AGE-RAGE signaling pathway, PI3K-Akt signaling pathway, atherosclerosis, and IL-17 signaling pathway.

Conclusion  The active compounds of these five classical prescriptions may exert therapeutic effects on RA through multi-target and multi-pathway synergistic mechanisms. This study provides a theoretical basis for further basic research and clinical application in RA treatment.

Full-text
Please download the PDF version to read the full text: download
References

1.Di Matteo A, Bathon JM, Emery P. Rheumatoid arthritis[J]. Lancet, 2023, 402(10416): 2019-2033. DOI: 10.1016/S0140-6736(23)01525-8.

2.Huang J, Fu X, Chen X, et al. Promising therapeutic targets for treatment of rheumatoid arthritis[J]. Front Immunol, 2021, 12: 686155. DOI: 10.3389/fimmu.2021.686155.

3.Alivernini S, Firestein GS, McInnes IB. The pathogenesis of rheumatoid arthritis[J]. Immunity, 2022, 55(12): 2255-2270. DOI: 10.1016/j.immuni.2022.11.009.

4.Venetsanopoulou AI, Alamanos Y, Voulgari PV, et al. Epidemiology of rheumatoid arthritis: genetic and environmental influences[J]. Expert Rev Clin Immunol, 2022, 18(9): 923-931. DOI: 10.1080/1744666X.2022.2106970.

5.Brown P, Pratt AG, Hyrich KL. Therapeutic advances in rheumatoid arthritis[J]. BMJ, 2024, 384: e070856. DOI: 10.1136/bmj-2022-070856.

6.王树刚, 陈文信, 尹国富. 类风湿关节炎的中医药特色治疗经验综述[J]. 中国中医药现代远程教育, 2024, 22(12): 161-163. [Wang SG, Chen WX, Yin GF. Treatment experience of rheumatoid arthritis with traditional Chinese medicine characteristics[J]. Chinese Medicine Modern Distance Education of China, 2024, 22(12): 161-163.] DOI: 10.3969/j.issn.1672-2779.2024.12.051.

7.尹玲桃, 陈达, 胡燕, 等. 中药防治类风湿关节炎的作用机制研究进展[J]. 临床合理用药, 2025, 18(8): 173-177. [Yin  LT, Chen  D, Hu Y, et al. Research progress on the mechanisms of traditional Chinese medicine in the prevention and treatment of rheumatoid arthritis[J]. Chinese Journal of Clinical Rational Drug Use, 2025, 18(8): 173-177.] DOI: 10.15887/j.cnki.13-1389/r.2025.08.050.

8.徐燕萍, 陈光星. 《金匮要略》论治风湿病[J]. 广州中医药大学学报, 2019, 36(3): 431-435. [Xu YP, Chen GX. Thoughts of differentiation and treatment of rheumatism in synopsis of golden chamber[J]. Journal of Guangzhou University of Traditional Chinese Medicine, 2019, 36(3): 431-435.] DOI: 10.13359/j.cnki.gzxbtcm.2019.03.028.

9.黄裕成. 麻黄加术汤治疗类风湿性关节炎的临床观察[J]. 光明中医, 2018, 33(5): 676-678. [Huang YC. Clinical observation on the clinical value and feasibility of mahuang jiazhu decoction in treating rheumatoid arthritis[J]. Guangming Journal of Chinese Medicine, 2018, 33(5): 676-678.] DOI: 10.3969/j.issn.1003-8914.2018.05.035.

10.何诚明, 李鑫, 刘田. 桂枝芍药知母汤治疗类风湿关节炎的临床疗效[J]. 深圳中西医结合杂志, 2024, 34(21): 49-52. [He CM, Li X, Liu T. Clinical efficacy of Guizhi Shaoyao Zhimu Tang in the treatment of rheumatoid arthritis[J]. Shenzhen Journal of Integrated Traditional Chinese and Western Medicine, 2024, 34(21): 49-52.] DOI: 10.16458/j.cnki.1007-0893.2024.21.014.

11.李天宇. 宣痹汤加减治疗湿热痹阻型类风湿关节炎的临床疗效观察[D]. 哈尔滨: 黑龙江中医药大学, 2019. DOI: 10.27127/d.cnki.ghlzu.2019.000065.

12.张润东, 刘宜杭, 杨珊茹, 等. 基于网络药理学与分子对接技术探究独活寄生汤治疗神经根型颈椎病的作用机制 [J]. 中医临床研究, 2024, 16(29): 17-22. [Zhang RD, Liu YH, Yang  SR, et al. The action mechanism of the Duhuo Jizhi decoction in treating cervical spondylotic radiculopathy based on network pharmacology and molecular docking technology[J]. Clinical Journal of Chinese Medicine, 2024, 16(29): 17-22.] DOI: 10.3969/j.issn.1674-7860.2024.29.003.

13.王一凡. 基于网络药理学的补肾强督治偻汤与补肾祛寒治尪汤异同分析[D]. 广州: 广州中医药大学, 2021. DOI: 10.27044/d.cnki.ggzzu.2021.001114.

14.秦雪, 姜立冬, 张旺东, 等. 基于网络药理学研究金银花抗流感病毒的有效成分及其分子机制[J]. 动物医学进展, 2025, 46(7): 71-79. [Qin X, Jiang LD, Zhang WD, et al. Revealing the molecular mechanisms of antiviral activity of lonicerae japonicae flos against influenza virus based on network pharmacology[J].Progress in Veterinary Medicine, 2025, 46(7): 71-79.] DOI: 10.16437/j.cnki.1007-5038.2025.07.011.

15.Jang S, Kwon EJ, Lee JJ. Rheumatoid arthritis: pathogenic roles of diverse immune cells[J]. Int J Mol Sci, 2022, 23(2): 905. DOI: 10.3390/ijms23020905.

16.吴闵, 姚晓玲, 王秋燚, 等. 基于“肾虚邪郁”理论探讨类风湿关节炎的发病机制[C]//贵阳: 贵州省中西医结合学会, 2019: 71-77. DOI: 10.26914/c.cnkihy.2019.051119.

17.白菁安, 杨洁, 何小鹃. 不同辨证体系中类风湿关节炎中医病机研究进展[J]. 陕西中医, 2024, 45(10): 1428-1430, 1434. [Bai JA, Yang J, He XJ. Research progress on traditional Chinese medicine pathogenesis of rheumatoid arthritis in different syndrome differentiation systems[J]. Shaanxi Journal of Traditional Chinese Medicine, 2024, 45(10): 1428-1430, 1434.] DOI: 10.3969/j.issn.1000-7369.2024.10.030.

18.Leyva-López N, Gutierrez-Grijalva EP, Ambriz-Perez DL, et al. Flavonoids as cytokine modulators: a possible therapy for inflammation-related diseases[J]. Int J Mol Sci, 2016, 17(6): 921. DOI: 10.3390/ijms17060921.

19.Tang M, Zeng Y, Peng W, et al. Pharmacological aspects of natural quercetin in rheumatoid arthritis[J]. Drug Des Devel Ther, 2022, 16: 2043-2053. DOI: 10.2147/DDDT.S364759.

20.Yuan K, Zhu Q, Lu Q, et al. Quercetin alleviates rheumatoid arthritis by inhibiting neutrophil inflammatory activities[J]. J Nutr Biochem, 2020, 84: 108454. DOI: 10.1016/j.jnutbio.2020.108454.

21.Atta A, Salem MM, El-Said KS, et al. Mechanistic role of quercetin as inhibitor for adenosine deaminase enzyme in rheumatoid arthritis: systematic review[J]. Cell Mol Biol Lett, 2024, 29(1): 14. DOI: 10.1186/s11658-024-00531-7.

22.Xiao B, Li J, Qiao Z, et al. Therapeutic effects of Siegesbeckia orientalis L. and its active compound luteolin in rheumatoid arthritis: network pharmacology, molecular docking and experimental validation[J]. J Ethnopharmacol, 2023, 317: 116852. DOI: 10.1016/j.jep.2023.116852.

23.Ramesh P, Jagadeesan R, Sekaran S, et al. Flavonoids: classification, function, and molecular mechanisms involved in bone remodelling[J]. Front Endocrinol (Lausanne), 2021, 12: 779638. DOI: 10.3389/fendo.2021.779638.

24.Alam W, Khan H, Shah MA, et al. Kaempferol as a dietary anti-inflammatory agent: current therapeutic standing[J]. Molecules, 2020, 25(18): 4073. DOI: 10.3390/molecules25184073.

25.Guo B, Zhao C, Zhang C, et al. Elucidation of the anti-inflammatory mechanism of Er Miao San by integrative approach of network pharmacology and experimental verification[J]. Pharmacol Res, 2022, 175: 106000. DOI: 10.1016/j.phrs.2021.106000.

26.Zhang F, Liu Z, He X, et al. β-Sitosterol-loaded solid lipid nanoparticles ameliorate complete Freund's adjuvant-induced arthritis in rats: involvement of NF-кB and HO-1/Nrf-2 pathway[J]. Drug Deliv, 2020, 27(1): 1329-1341. DOI: 10.1080/10717544.2020.1818883.

27.Qin Y, Cai ML, Jin HZ, et al. Age-associated B cells contribute to the pathogenesis of rheumatoid arthritis by inducing activation of fibroblast-like synoviocytes via TNF-α-mediated ERK1/2 and JAK-STAT1 pathways[J]. Ann Rheum Dis, 2022, 81(11): 1504-1514. DOI: 10.1136/ard-2022-222605.

28.Biesemann N, Margerie D, Asbrand C, et al. Additive efficacy of a bispecific anti-TNF/IL-6 nanobody compound in translational models of rheumatoid arthritis[J]. Sci Transl Med, 2023, 15(681): eabq4419. DOI: 10.1126/scitranslmed.abq4419.

29.Cheng Q, Chen M, Liu M, et al. Semaphorin 5A suppresses ferroptosis through activation of PI3K-AKT-mTOR signaling in rheumatoid arthritis[J]. Cell Death Dis, 2022, 13(7): 608. DOI: 10.1038/s41419-022-05065-4.

30.Zhao C, Yu Y, Yin G, et al. Sulfasalazine promotes ferroptosis through AKT-ERK1/2 and P53-SLC7A11 in rheumatoid arthritis[J]. Inflammopharmacology, 2024, 32(2): 1277-1294. DOI: 10.1007/s10787-024-01439-6.

31.Monu, Agnihotri P, Saquib M, et al. Targeting TNF-α-induced expression of TTR and RAGE in rheumatoid arthritis: Apigenin's mediated therapeutic approach[J]. Cytokine, 2024, 179: 156616. DOI: 10.1016/j.cyto.2024.156616.

Popular papers
Last 6 months