Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 29,2025 No.8 Detail

Tetrahydropalmatine activates the Nrf2/ARE pathway to alleviate oxidative stress and improve high glucose-induced insulin resistance in HepG2 cells

Published on Sep. 01, 2025Total Views: 158 times Total Downloads: 28 times Download Mobile

Author: YE Xiaoting 1 CHEN Xiaohai 2 XU Shuang 1

Affiliation: 1. Department of Infection, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, Zhejiang Province, China 2. Department of Pharmacy, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, Zhejiang Province, China

Keywords: Tetrahydropalmatine HepG2 Insulin resistance Nrf2/ARE Oxidative stress

DOI: 10.12173/j.issn.2097-4922.202410063

Reference: YE Xiaoting, CHEN Xiaohai, XU Shuang. Tetrahydropalmatine activates the Nrf2/ARE pathway to alleviate oxidative stress and improve high glucose-induced insulin resistance in HepG2 cells[J]. Yaoxue QianYan Zazhi, 2025, 29(8): 1360-1367. DOI: 10.12173/j.issn.2097-4922.202410063.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Objective  To explore the therapeutic mechanism of tetrahydropalmatine (THP) on high glucose-induced insulin resistance (IR) in HepG2 cells.

Methods  An IR model was established using HepG2 cells, which were divided into three groups: the control group (CON), the model group (HG), and the THP intervention group (HG+THP). Cell viability, glucose uptake, and phosphorylated Akt levels were detected to, evaluated the alleviating effect of THP on IR in HepG2 cells. Oxidative stress was assessed by measuring antioxidant enzyme activities [glutathione peroxidase (GSH-PX), superoxide dismutase (SOD), catalase (CAT)], reactive oxygen species (ROS) levels, and lipid peroxidation products [malondialdehyde (MDA), 4-hydroxynonenal (4-HNE)]. Western blot, qPCR, and cell transfection were used to detect the impact of THP on the nuclear factor-erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathway related genes and protein expression, and verify the mechanism of THP activating the Nrf2/ARE pathway to alleviate IR induced by high glucose.

Results  Compared to CON group, HG group showed lower 2-NBDG uptake and phosphorylated Akt levels, increased intracellular ROS activity, and reduced antioxidant enzyme activities of GSH-PX, CAT and SOD, with higher MDA and 4-HNE levels. THP intervention improved oxidative stress and restored glucose uptake. Western blot revealed increased Nrf2 and phosphorylated Nrf2 protein levels in HG+THP group, along with upregulated transcription levels of downstream antioxidant genes NAD(P)H: quinine oxidoreductase 1 (Nqo1), heme oxygenase-1 (Ho-1) and CAT. Nrf2 knockdown could inhibit THP's therapeutic effects on the IR induced by high glucose.

Conclusion  THP enhances antioxidant defenses and glucose uptake in HepG2 cells, and alleviates high glucose-induced oxidative stress and IR by activating the Nrf2/ARE pathway, which has the potential to be developed as a drug for the treatment of IR and metabolic diseases.

Full-text
Please download the PDF version to read the full text: download
References

1.宁春妹, 赵颖, 安佳秀, 等. 动物胰岛素抵抗的发生机制及治疗[J]. 黑龙江畜牧兽医, 2022, 657(21): 23-29. [Ning  CM, Zhao  Y, An JX, et al. Mechanism and treatment of insulin resistance in animals[J]. Heilongjiang Animal Science and Veterinary Medicine, 2022, 657(21): 23-29.] DOI: 10.13881/j.cnki.hljxmsy.2022.03.0081.

2.唐东旭, 黄钟鸣, 栾雨婷, 等. 非酒精性脂肪肝患者合并2型糖尿病的危险因素分析[J]. 中国现代医生, 2020, 58(6): 26-29. [Tang DX, Huang ZM, Luan YT, et al. Analysis of risk factors of patients with non-alcoholic fatty liver disease (NAFLD) complicated with type 2 diabetes mellitus(T2DM)[J]. China Modern Doctor, 2020, 58(6): 26-29.] https://www.cnki.com.cn/Article/CJFDTOTAL-ZDYS202006007.htm.

3.Rives C, Fougerat A, Ellero-Simatos S, et al. Oxidative stress in NAFLD: role of nutrients and food contaminants[J]. Biomolecules, 2020, 10(12): 1702. DOI: 10.3390/biom10121702.

4.Luc K, Schramm-Luc A, Guzik TJ, et al. Oxidative stress and inflammatory markers in prediabetes and diabetes[J]. J Physiol Pharmacol, 2019, 70(6). DOI: 10.26402/jpp.2019.6.01.

5.Besse-Patin A, Estall JL. An intimate relationship between ROS and insulin signalling: implications for antioxidant treatment of fatty liver disease[J]. Int J Cell Biol, 2014, 2014: 519153. DOI: 10.1155/2014/519153.

6.王安铸, 马晓昌. 延胡索乙素的研究进展[J]. 中华中医药杂志, 2020, 35(4): 1927-1929. [Wang AZ, Ma XC. Research progress of tetrahydropalmatine[J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2020, 35(4): 1927-1929.] https://d.wanfangdata.com.cn/periodical/zgyyxb202004081.

7.宋亚刚, 白明, 苗明三. 延胡索乙素对链脲佐菌素致糖尿病大鼠的影响[J]. 中华中医药杂志, 2020, 35(8): 3837-3841. [Song YG, Bai M, Miao MS. Effects of tetrahydropalmatine on streptozotocin-induced diabetes rats[J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2020, 35(8): 3837-3841.] https://d.wanfangdata.com.cn/periodical/zgyyxb202008012.

8.程连芝, 周家梅, 马俊龙, 等. 延胡索乙素通过抑制p38 MAPK信号通路介导的小胶质细胞活化改善糖尿病大鼠神经病理性疼痛[J]. 中国中药杂志, 2022, 47(9): 2533-2540. [Cheng LZ, Zhou JM, Ma JL, et al. Tetrahydropalmatine alleviated diabetic neuropathic pain by inhibiting activation of microglia via p38 MAPK signaling pathway[J]. China Journal of Chinese Materia Medica, 2022, 47(9): 2533-2540.] DOI: 10.19540/j.cnki.cjcmm.20220119.702.

9.蹇明辉, 陈文明, 张怡. 延胡索乙素对高糖诱导H9c2细胞凋亡和氧化应激的抑制作用[J]. 遵义医科大学学报, 2022, 45(3): 317-321. [Jian MH, Chen WM, Zhang Y. Inhibitory effect of l-tetrahydropalmatine on apoptosis and oxidative stress of H9 c2 cells induced by high glucose[J]. Journal of Zunyi Medical University, 2022, 45(3): 317-321.] https://d.wanfangdata.com.cn/periodical/zyykdxxb202203007.

10.Brown AE, Walker M. Genetics of insulin resistance and the metabolic syndrome[J]. Curr Cardiol Rep, 2016, 18(8): 75. DOI: 10.1007/s11886-016-0755-4.

11.Khalid M, Alkaabi J, Khan M, et al. Insulin signal transduction perturbations in insulin resistance[J]. Int J Mol Sci, 2021, 22(16): 8590. DOI: 10.3390/ijms22168590.

12.Kasai S, Kokubu D, Mizukami H, et al. Mitochondrial reactive oxygen species, insulin resistance, and Nrf2-mediated oxidative stress response-toward an actionable strategy for anti-aging[J]. Biomolecules, 2023, 13(10): 1544. DOI: 10.3390/biom13101544.

13.Lee SH, Park SY, Choi CS. Insulin resistance: from mechanisms to therapeutic strategies[J]. Diabetes Metab J, 2022, 46(1): 15-37. DOI: 10.4093/dmj.2021.0280.

14.Hartogh DJD, MacPherson R, Tsiani E. Muscle cell palmitate-induced insulin resistance, JNK, IKK/NF-kappaB, and STAT3 activation are attenuated by carnosic and rosmarinic acid[J]. Appl Physiol Nutr Metab, 2025, 50: 1-14. DOI: 10.1139/apnm-2024-0302.

15.Ozcan L, Tabas I. Calcium signalling and ER stress in insulin resistance and atherosclerosis[J]. J Intern Med, 2016, 280(5): 457-464. DOI: 10.1111/joim.12562.

16.Yin X, Liu Z, Wang J. Tetrahydropalmatine ameliorates hepatic steatosis in nonalcoholic fatty liver disease by switching lipid metabolism via AMPK-SREBP-1c-Sirt1 signaling axis[J]. Phytomedicine, 2023, 119: 155005. DOI: 10.1016/j.phymed.2023.155005.

17.Singh S, Ghosh P, Sharma S, et al. Tetrahydropalmatine from medicinal plants activates human glucokinase to regulate glucose homeostasis[J]. Biotechnol Appl Biochem, 2024, 71(2): 295-313. DOI: 10.1002/bab.2541.

18.Handy DE, Loscalzo J. The role of glutathione peroxidase-1 in health and disease[J]. Free Radic Biol Med, 2022, 188: 146-161. DOI: 10.1016/j.freeradbiomed.2022.06.004.

19.李湘, 陈丹丹. 还原型谷胱甘肽辅助治疗2型糖尿病合并非酒精性脂肪肝的疗效观察[J]. 中国现代医生, 2014, 52(34): 52-57. [Li X, Chen DD. Curative effect of reduced glutathione on type 2 diabetes mellitus complicated with nonalcoholic fatty liver disease[J]. China Modern Doctor, 2014, 52(34): 52-57.] https://d.wanfangdata.com.cn/periodical/zwkjzlml-yyws201434016.

20.Li S, Eguchi N, Lau H, et al. The role of the Nrf2 signaling in obesity and insulin resistance[J]. Int J Mol Sci, 2020, 21(18): 6973. DOI: 10.3390/ijms21186973.

21.Uruno A, Matsumaru D, Ryoke R, et al. Nrf2 suppresses oxidative stress and inflammation in app knock-in Alzheimer's disease model mice[J]. Mol Cell Biol. 2020, 40(6): e00467-19. DOI: 10.1128/MCB.00467-19.

22.Ding X, Jian T, Wu Y, et al. Ellagic acid ameliorates oxidative stress and insulin resistance in high glucose-treated HepG2 cells via miR-223/keap1-Nrf2 pathway[J]. Biomed Pharmacother, 2019, 110: 85-94. DOI: 10.1016/j.biopha.2018.11.018.

Popular papers
Last 6 months