Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 29,2025 No.11 Detail

MCUB as a novel biomarker for prognosis and its molecular characterization in cancer

Published on Dec. 01, 2025Total Views: 265 times Total Downloads: 41 times Download Mobile

Author: LYU Xiaodan LIU Pingyu

Affiliation: Department of Pharmacy, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China

Keywords: Mitochondrial calcium uniporter dominant negative subunit beta Pan-cancer analysis Prognostic biomarker Immune infiltration Drug sensitivity Protein-protein interaction The cancer genome atlas

DOI: 10.12173/j.issn.2097-4922.202506029

Reference: LYU Xiaodan, LIU Pingyu. MCUB as a novel biomarker for prognosis and its molecular characterization in cancer[J]. Yaoxue QianYan Zazhi, 2025, 29(11): 1853-1862. DOI: 10.12173/j.issn.2097-4922.202506029.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Objective  To systematically analyze the expression profile, prognostic value, genomic characteristics, biological functions, and associations with the immune microenvironment and therapeutic sensitivity of mitochondrial calcium uniporter dominant negative subunit beta (MCUB) across pan-cancer.

Methods  Based on public databases including TCGA, HPA, CancerSEA, STRING, GeneMANIA, the MCUB's mRNA and protein expression levels, genomic variations such as mutations and copy number variations (CNVs), prognostic correlations such as overall survival (OS), disease-free interval (DFI), disease-specific survival (DSS), progression-free survival (PFS), functional enrichment, protein interaction networks, immune infiltration features, and drug sensitivity in multiple tumors were comprehensively analyzed.

Results  High MCUB expression was significantly associated with poor prognosis in various cancers. Interaction network analysis revealed that MCUB interacted with proteins including the mitochondrial calcium uniporter (MCU) and histone methyltransferase (SETDB1), suggesting its potential involvement in tumor progression through regulating calcium signaling and epigenetic modifications. The correlation between MCUB expression and T-cell infiltration, along with its impact on prognosis, indicated its potential as a prognostic tumor biomarker and possible influence on the tumor immune microenvironment. Furthermore, drug sensitivity analysis revealed significant associations between MCUB expression levels and the efficacy of specific drugs, providing clues for developing therapeutic strategies targeting MCUB or its related pathways.

Conclusion  MCUB is highly expressed in multiple tumors and serves as an independent predictor of poor prognosis for patients with cancers such as clear cell renal cell carcinoma (KIRC) and lower-grade glioma (LGG). It promotes tumor progression by interacting with MCU and SETDB1 and influencing T-cell infiltration. The significant correlation between MCUB expression and drug sensitivity highlights its potential as a pan-cancer prognostic biomarker and therapeutic target for tumors like KIRC.

Full-text
Please download the PDF version to read the full text: download
References

1.Gincel D, Zaid H, Shoshan-Barmatz V. Calcium binding and translocation by the voltage-dependent anion channel: a possible regulatory mechanism in mitochondrial function[J]. Biochem J, 2001, 358(Pt 1): 147-155. DOI: 10.1042/0264-6021:3580147.

2.Jeong SY, Seol DW. The role of mitochondria in apoptosis[J]. BMB Rep, 2008, 41(1): 11-22. DOI: 10.5483/bmbrep.2008.41.1.011.

3.Bravo-Sagua R, Parra V, López-Crisosto C, et al. Calcium transport and signaling in mitochondria[J]. Compr Physiol, 2017, 7(2): 623-634. DOI: 10.1002/cphy.c160013.

4.Csordás G, Várnai P, Golenár T, et al. Calcium transport across the inner mitochondrial membrane: molecular mechanisms and pharmacology[J]. Mol Cell Endocrinol, 2012, 353(1-2): 109-113. DOI: 10.1016/j.mce.2011.11.011.

5.Kirichok Y, Krapivinsky G, Clapham DE. The mitochondrial calcium uniporter is a highly selective ion channel[J]. Nature, 2004, 427(6972): 360-364. DOI: 10.1038/nature02246.

6.Fieni F, Lee SB, Jan YN, et al. Activity of the mitochondrial calcium uniporter varies greatly between tissues[J]. Nat Commun, 2012, 3: 1317. DOI: 10.1038/ncomms2325.

7.Colussi DM, Grainger R, Noble M, et al. Disrupting the network of co-evolving amino terminal domain residues relieves mitochondrial calcium uptake inhibition by MCUB[J]. Comput Struct Biotechnol J, 2024, 27: 190-213. DOI: 10.1016/j.csbj.2024.12.007.

8.MacEwen MJS, Sancak Y. Beyond the matrix: structural and physiological advancements in mitochondrial calcium signaling[J]. Biochem Soc Trans, 2023, 51(2): 665-673. DOI: 10.1042/BST20220317.

9.Furuno T, Shinkai N, Inoh Y, et al. Impaired expression of the mitochondrial calcium uniporter suppresses mast cell degranulation[J]. Mol Cell Biochem, 2015, 410(1-2): 215-221. DOI: 10.1007/s11010-015-2554-4.

10.Lee SH, Duron HE, Chaudhuri D. Beyond the TCA cycle: new insights into mitochondrial calcium regulation of oxidative phosphorylation[J]. Biochem Soc Trans, 2023, 51(4): 1661-1673. DOI: 10.1042/BST20230012.

11.Rai NK, Eberhardt DR, Balynas AM, et al. Mechanism of MCUB-dependent inhibition of mitochondrial calcium uptake[J]. J Cell Physiol, 2025, 240(4): e70033. DOI: 10.1002/jcp.70033.

12.Lambert JP, Murray EK, Elrod JW. MCUB and mitochondrial calcium uptake-modeling, function, and therapeutic potential[J]. Expert Opin Ther Targets, 2020, 24(3): 163-169. DOI: 10.1080/14728222.2020.1732926.

13.de la Herran HD, Reane DV, Cheng YM, et al. Systematic mapping of mitochondrial calcium uniporter channel (MCUC)-mediated calcium signaling networks[J]. EMBO J, 2024, 43(21): 5288-5326. DOI: 10.1038/s44318-024-00219-w.

14.Garbincius JF, Elrod JW. Mitochondrial calcium exchange in physiology and disease[J]. Physiol Rev, 2022, 102(2): 893-992. DOI: 10.1152/physrev.00041.2020.

15.Colussi DM, Stathopulos PB. The mitochondrial calcium uniporter: balancing tumourigenic and anti-tumourigenic responses[J]. J Physiol, 2024, 602(14): 3315-3339. DOI: 10.1113/JP285515.

16.Cui CC, Yang JB, Fu LW, et al. Progress in understanding mitochondrial calcium uniporter complex-mediated calcium signalling: a potential target for cancer treatment[J]. Br J Pharmacol, 2019, 176(9): 1190-1205. DOI: 10.1111/bph.14632.

17.Zhu JJ, Zhang WT, Chang JJ, et al. Identification and validation of a mitochondria calcium uptake-related gene signature for predicting prognosis in COAD[J]. J Cancer, 2023, 14(5): 741-758. DOI: 10.7150/jca.81811.

18.de Oliveira RC, de Souza FG, Bispo AG, et al. Differential gene expression analysis supports dysregulation of mitochondrial activity as a new perspective for glioblastoma's aggressiveness[J]. Heliyon, 2024, 10(22): e40414. DOI: 10.1016/j.heliyon.2024.e40414.

19.Xu R, Han MZ, Xu YY, et al. Coiled-coil domain containing 109B is a HIF1α-regulated gene critical for progression of human gliomas[J]. J Transl Med, 2017, 15(1): 165. DOI: 10.1186/s12967-017-1266-9.

20.Blum A, Wang P, Zenklusen JC. SnapShot: TCGA-analyzed tumors[J]. Cell, 2018, 173(2): 530. DOI: 10.1016/j.cell.2018.03.059.

21.Tomczak K, Czerwińska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge[J]. Contemp Oncol (Pozn), 2015, 19(1A): A68-A77. DOI: 10.5114/wo.2014.47136.

22.Clough E, Barrett T. The gene expression omnibus database[J]. Methods Mol Biol, 2016, 1418: 93-110. DOI: 10.1007/978-1-4939-3578-9_5.

23.Nusinow DP, Szpyt J, Ghandi M, et al. Quantitative proteomics of the cancer cell line encyclopedia[J]. Cell, 2020, 180(2): 387-402.e16. DOI: 10.1016/j.cell.2019.12.023.

24.Uhlén M, Fagerberg L, Hallström BM, et al. Proteomics. tissue-based map of the human proteome[J]. Science, 2015, 347(6220): 1260419. DOI: 10.1126/science.1260419.

25.Li C, Tang Z, Zhang W, et al. GEPIA2021: integrating multiple deconvolution-based analysis into GEPIA[J]. Nucleic Acids Res, 2021, 49(W1): W242-W246. DOI: 10.1093/nar/gkab418.

26.Yuan HT, Yan M, Zhang GX, et al. CancerSEA: a cancer single-cell state atlas[J]. Nucleic Acids Res, 2019, 47(D1): D900-D908. DOI: 10.1093/nar/gky939.

27.de Bruijn I, Kundra R, Mastrogiacomo B, et al. Analysis and visualization of longitudinal genomic and clinical data from the AACR project GENIE biopharma collaborative in cBioPortal[J]. Cancer Res, 2023, 83(23): 3861-3867. DOI: 10.1158/0008-5472.CAN-23-0816.

28.Liu CJ, Hu FF, Xie GY, et al. GSCA: an integrated platform for gene set cancer analysis at genomic, pharmacogenomic and immunogenomic levels[J]. Brief Bioinform, 2023, 24(1): bbac558. DOI: 10.1093/bib/bbac558.

29.Szklarczyk D, Kirsch R, Koutrouli M, et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest[J]. Nucleic Acids Res, 2023, 51(D1): D638-D646. DOI: 10.1093/nar/gkac1000.

30.Mostafavi S, Ray D, Warde-Farley D, et al. GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function[J]. Genome Biol, 2008, 9 Suppl 1(Suppl 1): S4. DOI: 10.1186/gb-2008-9-s1-s4.

31.Li TW, Fu JX, Zeng ZX, et al. TIMER2.0 for analysis of tumor-infiltrating immune cells[J]. Nucleic Acids Res, 2020, 48(W1): W509-W514. DOI: 10.1093/nar/gkaa407.

32.Liu Z, Liu L, Weng S. et al. BEST: a web application for comprehensive biomarker exploration on large-scale data in solid tumors[J]. J Big Data, 2023, 10: 165. DOI: 10.1186/s40537-023-00844-y.

33.Huo JZ, Prasad V, Grimes KM, et al. MCUb is an inducible regulator of calcium-dependent mitochondrial metabolism and substrate utilization in muscle[J]. Cell Rep, 2023, 42(11): 113465. DOI: 10.1016/j.celrep.2023.113465.

34.Griffin GK, Wu JY, Iracheta-Vellve A, et al. Epigenetic silencing by SETDB1 suppresses tumour intrinsic immunogenicity[J]. Nature, 2021, 595(7866): 309-314. DOI: 10.1038/s41586-021-03520-4.

35.Lazaro-Camp VJ, Salari K, Meng XB, et al. SETDB1 in cancer: overexpression and its therapeutic implications[J]. Am J Cancer Res, 2021, 11(5): 1803-1827. https://pubmed.ncbi.nlm.nih.gov/34094655/.

36.Prashanth S, Maniswami RR, Rajajeyabalachandran G, et al. SETDB1, an H3K9-specific methyltransferase: an attractive epigenetic target to combat cancer[J]. Drug Discov Today, 2024, 29(5): 103982. DOI: 10.1016/j.drudis.2024.103982.

37.She XW, Wu Q, Rao ZJ, et al. SETDB1 methylates MCT1 promoting tumor progression by enhancing the lactate shuttle[J]. Adv Sci (Weinh), 2023, 10(28): e2301871. DOI: 10.1002/advs.202301871.

Popular papers
Last 6 months