Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 27,2024 No.8 Detail

Research progress of N6-methyladenosine in diseases

Published on Sep. 04, 2024Total Views: 927 times Total Downloads: 182 times Download Mobile

Author: PAN Wang ZHOU Aihua

Affiliation: School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China

Keywords: N6-methyladenosine methylase demethylase Cellular processes Lung cancer Pulmonary fibrosis Renal cell carcinoma Acute kidney injury Asthma Alzheimer's disease Research progress

DOI: 10.12173/j.issn.1008-049X.202403096

Reference: PAN Wang, ZHOU Aihua.Research progress of N6-methyladenosine in diseases[J].Zhongguo Yaoshi Zazhi,2024, 27(8):1436-1444.DOI: 10.12173/j.issn.1008-049X.202403096.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

N6-methyladenosine modification is regulated by methylase and demethylase, resulting in a dynamic and reversible process. Changes in m6A levels are involved in a wide range of cellular processes, including nuclear RNA output, mRNA metabolism, protein translation, and RNA splicing, and have strong associations with various diseases. The purpose of this paper is to generalize and summarize the role and mechanism of the change of m6A expression level in mRNA in three common diseases, as well as the research trend based on the change of m6A level in mRNA as a drug intervention target.

Full-text
Please download the PDF version to read the full text: download
References

1.Niu YM, Zhao X, Wu YS, et al. N6-methyl-adenosine (m6A) in RNA: an old modification with a novel epigenetic function[J]. Genomics Proteomics Bioinformatics, 2013, 11(1): 8-17. DOI: 10.1016/j.gpb.2012.12.002.

2.Chen YQ, Hong TT, Wang SR, et al. Epigenetic modification of nucleic acids: from basic studies to medical applications[J]. Chem Soc Rev, 2017, 46(10): 2844-2872. DOI: 10.1039/c6cs00599c.

3.Song JH, Yi CQ. Chemical modifications to RNA: a new layer of gene expression regulation[J]. ACS Chem Biol, 2017, 12(2): 316-325. DOI: 10.1021/acschembio.6b00960.

4.Chokkalla AK, Mehta SL, Kim T, et al. Transient focal ischemia significantly alters the m6A epitranscriptomic tagging of RNAs in the brain[J]. Stroke, 2019, 50(10): 2912-2921. DOI: 10.1161/strokeaha.119.026433.

5.Sun YT, Jin D, Zhang ZW, et al. N6-methyladenosine (m6A) methylation in kidney diseases: mechanisms and therapeutic potential[J]. Biochim Biophys Acta Gene Regul Mech, 2023, 1866(4): 194967. DOI: 10.1016/j.bbagrm.2023.194967.

6.Roy B, Depaix A, Périgaud C, et al. Recent trends in nucleotide synthesis[J]. Chem Rev, 2016, 116(14): 7854-7897. DOI: 10.1021/acs.chemrev.6b00174.

7.Wang X, Feng J, Xue Y, et al. Structural basis of N 6-adenosine methylation by the METTL3-METTL14 complex[J]. Nature, 2016, 534(7608): 575-578. DOI: 10.1038/nature18298.

8.Schwartz S, Mumbach MR, Jovanovic M, et al. Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5' sites[J]. Cell Rep, 2014, 8(1): 284-296. DOI: 10.1016/j.celrep.2014.05.048.

9.Liu JZ, Yue YN, Han DL, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N 6-adenosine methylation[J]. Nat Chem Biol, 2014, 10(2): 93-95. DOI: 10.1038/nchembio.1432.

10.Ping XL, Sun BF, Wang L, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase[J]. Cell Res, 2014, 24(2): 177-189. DOI: 10.1038/nchembio.1432.

11.Fu Y, Dominissini D, Rechavi G, et al. Gene expression regulation mediated through reversible m6A RNA methylation[J]. Nat Rev Genet, 2014, 15(5): 293-306. DOI: 10.1038/nrg3724.

12.Zhao YC, Shi YF, Shen HF, et al. m6A-binding proteins: the emerging crucial performers in epigenetics[J]. J Hematol Oncol, 2020, 13(1): 35. DOI: 10.1186/s13045-020-00872-8.

13.Zhou PH, Wu M, Ye CY, et al. Meclofenamic acid promotes cisplatin-induced acute kidney injury by inhibiting fat mass and obesity-associated protein-mediated m6A abrogation in RNA[J]. J Biol Chem, 2019, 294(45): 16908-16917. DOI: 10.1186/s13045-020-00872-8.

14.Shen JX, Wang WP, Shao XH, et al. Integrated analysis of m6A methylome in cisplatin-induced acute kidney injury and berberine alleviation in mouse[J]. Front Genet, 2020, 11: 584460. DOI: 10.3389/fgene.2020.584460.

15.Wang CY, Lin TA, Ho MY, et al. Regulation of autophagy in leukocytes through RNA N6-adenosine methylation in chronic kidney disease patients[J]. Biochem Biophys Res Commun, 2020, 527(4): 953-959. DOI: 10.1016/j.bbrc.2020.04.138.

16.Zhao HH, Pan SK, Duan JY, et al. Integrative analysis of m6A regulator-mediated RNA methylation modification patterns and immune characteristics in lupus nephritis[J]. Front Cell Dev Biol, 2021, 9: 724837. DOI: 10.3389/fcell.2021.724837.

17.Yin SH, Li W, Wang JJ, et al. Screening of key genes associated with m6A methylation in diabetic nephropathy patients by CIBERSORT and weighted gene coexpression network analysis[J]. Am J Transl Res, 2022, 14(4): 2280-2290. DOI: 10.3389/fgene.2023.1183467.

18.Li CY, Su F, Liang Z, et al. Macrophage M1 regulatory diabetic nephropathy is mediated by m6A methylation modification of lncRNA expression[J]. Mol Immunol, 2022, 144: 16-25. DOI: 10.1016/j.molimm.2022.02.008.

19.Zhu DW, Liu YT, Chen JJ, et al. The methyltransferase METTL3 promotes tumorigenesis via mediating HHLA2 mRNA m6A modification in human renal cell carcinoma[J]. J Transl Med, 2022, 20(1): 298. DOI: 10.1186/s12967-022-03496-3.

20.Zhang XL, Wang F, Wang ZJ, et al. ALKBH5 promotes the proliferation of renal cell carcinoma by regulating AURKB expression in an m6A-dependent manner[J]. Ann Transl Med, 2020, 8(10): 646. DOI: 10.21037/atm-20-3079.

21.Ying YF, Ma XY, Fang JJ, et al. EGR2-mediated regulation of m6A reader IGF2BP proteins drive RCC tumorigenesis and metastasis via enhancing S1PR3 mRNA stabilization[J]. Cell Death Dis, 2021, 12(8): 750. DOI: 10.1038/s41419-021-04038-3.

22.Zhang CJ, Chen L, Liu YH, et al. Downregulated METTL14 accumulates BPTF that reinforces super-enhancers and distal lung metastasis via glycolytic reprogramming in renal cell carcinoma[J]. Theranostics, 2021, 11(8): 3676-3693. DOI: 10.7150/thno.55424.

23.Zhang W, Chen YM, Zeng ZP, et al. The novel m6A writer METTL5 as prognostic biomarker probably associating with the regulation of immune microenvironment in kidney cancer[J]. Heliyon, 2022, 8(12): e12078. DOI: 10.1016/j.heliyon.2022.e12078.

24.Zhang JX, Huang PJ, Wang DP, et al. m6A modification regulates lung fibroblast-to-myofibroblast transition through modulating KCNH6 mRNA translation[J]. Mol Ther, 2021, 29(12): 3436-3448. DOI: 10.1016/j.heliyon.2022.e12078.

25.Han XZ, Xiong XY, Shi XJ, et al. Targeted sequencing of NOTCH signaling pathway genes and association analysis of variants correlated with mandibular prognathism[J]. Head Face Med, 2021, 17(1): 17. DOI: 10.1186/s13005-021-00268-0.

26.Iaquinta MR, Lanzillotti C, Mazziotta C, et al. The role of microRNAs in the osteogenic and chondrogenic differentiation of mesenchymal stem cells and bone pathologies[J]. Theranostics, 2021, 11(13): 6573-6591. DOI: 10.7150/thno.55664.

27.Fan LX, Wu JQ, Wang HJ, et al. METTL3-mediated N6-methyladenosine methylation modifies Foxp3 mRNA levels and affects the treg cells proportion in peripheral blood of patients with asthma[J]. Ann Clin Lab Sci, 2022, 52(6): 884-894. DOI: 10.18502/ijaai.v23i2.15326.

28.Kim H, Lee YS, Kim SM, et al. RNA demethylation by FTO stabilizes the FOXJ1 mRNA for proper motile ciliogenesis[J]. Dev Cell, 2021, 56(8): 1118-1130. e6. DOI: 10.1016/j.devcel.2021.03.006.

29.Ding YD, Qi NN, Wang K, et al. FTO facilitates lung adenocarcinoma cell progression by activating cell migration through mRNA demethylation[J]. Onco Targets Ther, 2020, 13: 1461-1470. DOI: 10.2147/ott.s231914.

30.Xu F, Zhang HP, Chen JX, et al. Immune signature of T follicular helper cells predicts clinical prognostic and therapeutic impact in lung squamous cell carcinoma[J]. Int Immunopharmacol, 2020, 81: 105932. DOI: 10.1016/j.intimp.2019.105932.

31.Jin D, Guo J, Wu Y, et al. RETRACTED ARTICLE: m6A mRNA methylation initiated by METTL3 directly promotes YAP translation and increases YAP activity by regulating the MALAT1-miR-1914-3p-YAP axis to induce NSCLC drug resistance and metastasis[J]. J Hematol Oncol, 2019, 12(1): 135. DOI: 10.1186/s13045-019-0830-6.

32.Breijyeh Z, Karaman R. Comprehensive review on Alzheimer's disease: causes and treatment[J]. Molecules, 2020, 25(24): 5789. DOI: 10.3390/molecules25245789.

33.Ye X, Sun XQ, Starovoytov V, et al. Parkin-mediated mitophagy in mutant hAPP neurons and Alzheimer's disease patient brains[J]. Hum Mol Genet, 2015, 24(10): 2938-2951. DOI: 10.1093/hmg/ddv056.

34.Wang L, Fan YF, Li BR, et al. Maslinic acid suppresses high glucose-induced inflammation by epigenetically inhibiting TXNIP expression[J]. Curr Med Sci, 2022, 42(6): 1213-1219. DOI: 10.1007/s11596-022-2657-6.

35.Du YY, Han MD, Cao KX, et al. Gold nanorods exhibit intrinsic therapeutic activity via controlling N6-methyladenosine-based epitranscriptomics in acute myeloid leukemia[J]. ACS Nano, 2021, 15(11): 17689-17704. DOI: 10.1021/acsnano.1c05547.

36.Zhao M, Li PY, Qiao D, et al. N6-methyladenosine modification of TSC1 mRNA contributes to macrophage polarization regulated by Coptisine in DSS-induced ulcerative colitis[J]. Phytomedicine, 2024, 122: 155153. DOI: 10.1016/j.phymed.2023.155153.

Popular papers
Last 6 months