Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 28,2024 No.2 Detail

Research progress in targeted PD-L1 related inhibitors and degraders

Published on Nov. 08, 2024Total Views: 392 times Total Downloads: 37 times Download Mobile

Author: XIAO Yao ZHU Yawen

Affiliation: Department of Pharmacy, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan 430063, China

Keywords: Immunotherapy Degraders Small molecule inhibitors Programmed death-1/programmed ligand death-1 Proteolysis-targeting chimeras Lysosome-targeting chimeras technologies

DOI: 10.12173/j.issn.2097-4922.202405038

Reference: XIAO Yao, ZHU Yawen.Research progress in targeted PD-L1 related inhibitors and degraders[J].Yaoxue QianYan Zazhi,2024, 28(2):310-320.DOI: 10.12173/j.issn.2097-4922.202405038.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Tumor immunotherapy is revolutionizing the treatment approach for cancer, and has significantly improved overall survival and progression-free survival in various types of cancer patients. The mechanism of action for immune checkpoint inhibitors involves blocking the interaction between programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1), thereby reactivating the anti-cancer activity of cytotoxic T cells and exerting an immune-mediated anti-cancer effect. However, the PD-1/PD-L1 monoclonal antibody has a clinical efficacy rate of only about 10%-30%, and can also cause severe treatment-related adverse reactions such as immune myocarditis. Small molecule compounds have several advantages in terms of pharmacokinetics, such as better oral bioavailability, higher penetration into relevant tissues and tumor cells, and reasonable half-life. Currently, the development of small-molecule tumor immunotherapeutic drugs has become a highly active research field in cancer immunotherapy. This article aims to summarize the recent advancements in small molecule research for tumor immunotherapy over the past five years, including PD-L1 small molecule inhibitors, PD-L1 degraders based on proteolysis-targeting chimeras, and lysosome-targeting chimeras technologies, and discuss the future directions for the development of small molecule inhibitors, providing new theoretical references for tumor immunotherapy.

Full-text
Please download the PDF version to read the full text: download
References

1.Alsina M, Arrazubi V, Diez M, et al. Tabernero, current developments in gastric cancer: from molecular profiling to treatment strategy[J]. Nat Rev Gastroenterol Hepatol, 2023, 20(3): 155-170. DOI: 10.1038/s41575-022-00703-w.

2.Brahmer JR, Lee JS, Ciuleanu TE, et al, Five-year survival outcomes with nivolumab plus ipilimumab versus chemotherapy as first-line treatment for metastatic non-small-cell lung cancer in checkmate 227[J]. J Clin Oncol, 2023, 41(6): 1200-1212. DOI: 10.1200/JCO.22.01503.

3.Damia G. Targeting DNA-PK in cancer[J]. Mutat Res, 2020, 821: 111692. DOI: 10.1016/j.mrfmmm.2020. 111692.

4.de Visser KE, Joyce JA. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth[J]. Cancer Cell, 2023, 41(3): 374-403. DOI: 10.1016/j.ccell.2023.02.016.

5.Deng X, Mai R, Zhang C, et al. Discovery of novel cell-penetrating and tumor-targeting peptide-drug conjugate (PDC) for programmable delivery of paclitaxel and cancer treatment[J]. Eur J Med Chem, 2021, 213: 113050. DOI: 10.1016/j.ejmech.2020.113050.

6.Dai MY, Shi YY, Wang AJ, et al. High-potency PD-1/PD-L1 degradation induced by peptide-PROTAC in human cancer cells[J]. Cell Death Dis, 2022, 13(11): 924. DOI: 10.1038/s41419-022-05375-7.

7.Dai X, Wang K, Chen H, et al. Design, synthesis, and biological evaluation of 1-methyl-1H-pyrazolo[4,3-b]pyridine derivatives as novel small-molecule inhibitors targeting the PD-1/PD-L1 interaction[J]. Bioorg Chem, 2021, 114: 105034. DOI: 10.1016/j.bioorg.2021.105034.

8.Geng QH, Jiao PF, Jin P, et al. PD-1/PD-L1 inhibitors for immuno-oncology: from antibodies to small molecules[J]. Curr Pharm Des, 2018, 23(39): 6033-6041. DOI: 10.2174/1381612823666171004120152.

9.Gong J, Chehrazi-Raffle A, Reddi S, et al. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations[J]. J Immunother Cancer, 2018, 6(1): 8. DOI: 10.1186/s40425-018-0316-z.

10.Gordon SR, Maute RL, Dulken BW, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity[J]. Nature, 2017, 545(7655): 495-499. DOI: 10.1038/nature22396.

11.Keir ME, Butte MJ, Freeman GJ. PD-1 and its ligands in tolerance and immunity[J]. Annu Rev Immunol, 2008, 26: 677-704. DOI: 10.1146/annurev.immunol.26.021607.090331.

12.Koblish HK, Wu L, Wang LS, et al. Characterization of INCB086550: a potent and novel small-molecule PD-L1 Inhibitor[J]. Cancer Discov, 2022, 12(6): 1482-1499. DOI: 10.1158/2159-8290.CD-21-1156.

13.Kuroishi T. Regulation of immunological and inflammatory functions by biotin[J]. Can J Physiol Pharmacol, 2015, 93(12): 1091-1096. DOI: 10.1139/cjpp-2014-0460.

14.Lai Y, Chu X, Di L, et al. Recent advances in the translation of drug metabolism and pharmacokinetics science for drug discovery and development[J]. Acta Pharm Sin B, 2022, 12(6): 2751-2777. DOI: 10.1016/j.apsb.2022.03.009.

15.Cheng B, Yuan WE, Su J, et al. Recent advances in small molecule based cancer immunotherapy[J]. Eur J Med Chem, 2018, 157: 582-598. DOI: 10.1016/j.ejmech.2018.08.028.

16.Banik SM, Pedram K, Wisnovsky S, et al. Lysosome-targeting chimaeras for degradation of extracellular proteins[J]. Nature, 2020, 584(7820): 291-297. DOI: 10.1038/s41586-020-2545-9.

17.Blevins DJ, Hanley R, Bolduc T, et al. In vitro assessment of putative PD-1/PD-L1 inhibitors: suggestions of an alternative mode of action[J]. ACS Med Chem Lett, 2019, 10(8): 1187-1192. DOI: 10.1021/acsmedchemlett.9b00221.

18.Bondeson DP, Smith BE, Burslem GM, et al. Lessons in PROTAC design from selective degradation with a promiscuous warhead[J]. Cell Chem Biol, 2018, 25(1): 78-87.e5. DOI: 10.1016/j.chembiol.2017.09.010.

19.Bu LL, Yu GT, Wu L, et al. STAT3 induces immunosuppression by upregulating PD-1/PD-L1 in HNSCC[J]. J Dent Res, 2017, 96(9): 1027-1034. DOI: 10.1177/0022034517712435.

20.Burr ML, Sparbier CE, Chan YC, et al. CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity[J]. Nature, 2017, 549(7670): 101-105. DOI: 10.1038/nature23643.

21.Chamberlain PP, Hamann LG. Development of targeted protein degradation therapeutics[J]. Nat Chem Biol, 2019, 15(10): 937-944. DOI: 10.1038/s41589-019-0362-y.

22.Cheng B, Xiao Y, Xue M, et al. Recent advances in the development of PD-L1 modulators: degraders, downregulators, and covalent inhibitors[J]. J Med Chem, 2020, 63(24): 15389-15398. DOI: 10.1021/acs.jmedchem.0c01362.

23.Musielak B, Kocik J, Skalniak L, et al. CA-170 - A potent small-molecule PD-L1 inhibitor or not?[J]. Molecules, 2019, 24(15): 2804. DOI: 10.3390/molecules24152804.

24.Qin M, Cao Q, Wu X, et al. Discovery of the programmed cell death-1/programmed cell death-ligand 1 interaction inhibitors bearing an indoline scaffold[J]. Eur J Med Chem, 2020, 186: 111856. DOI: 10.1016/j.ejmech.2019.111856.

25.Qin M, Cao Q, Zheng S, et al. Discovery of [1,2,4]triazolo[4,3- a]pyridines as potent inhibitors targeting the programmed cell death-1/programmed cell death-ligand 1 interaction[J]. J Med Chem, 2019, 62(9): 4703-4715. DOI: 10.1021/acs.jmedchem.9b00312.

26.Shaabani S, Gadina L, Surmiak E, et al. Biphenyl ether analogs containing pomalidomide as small-molecule inhibitors of the programmed cell death-1/programmed cell death-ligand 1 interaction[J]. Molecules, 2022, 27(11): 3454. DOI: 10.3390/molecules27113454.

27.Guzik K, Zak KM, Grudnik P, et al. Small-molecule inhibitors of the programmed cell death-1/programmed death-ligand 1 (PD-1/PD-L1) interaction via transiently induced protein states and dimerization of PD-L1[J]. J Med Chem, 2017, 60(13): 5857-5867. DOI: 10.1021/acs.jmedchem.7b00293.

28.Hsu JM, Li CW, Lai YJ, et al. Posttranslational modifications of PD-L1 and their applications in cancer therapy[J]. Cancer Res, 2018, 78(22): 6349-6353. DOI: 10.1158/0008-5472.CAN-18-1892.

29.Cheng B, Ren Y, Cao H, et al. Discovery of novel resorcinol diphenyl ether-based PROTAC-like molecules as dual inhibitors and degraders of PD-L1[J]. Eur J Med Chem, 202, 199: 112377. DOI: 10.1016/j.ejmech.2020.112377.

30.Cheng B, Ren Y, Niu X, et al. Discovery of novel resorcinol dibenzyl ethers targeting the programmed cell death-1/programmed cell death-ligand 1 interaction as potential anticancer agents[J]. J Med Chem, 2020, 63(15): 8338-8358. DOI: 10.1021/acs.jmedchem.0c00574.

31.Chupak LS, Ding M, Martin SW, et al. Compounds useful as immunomodulators (WO2015034820) [EB/OL]. (2015-03-12)[2024-05-09]. https://patentscope2.wipo.int/search/en/detail.jsf?docId=WO2015034820.

32.Ding Z, Wang S, Shi Y, et al. Discovery of novel d-(+)-biotin-conjugated resorcinol dibenzyl ether-based PD-L1 inhibitors for targeted cancer immunotherapy[J]. J Med Chem, 2023, 66(15): 10364-10380. DOI: 10.1021/acs.jmedchem.3c00479.

33.Lin DY, Tanaka Y, Iwasaki M, et al. The PD-1/PD-L1 complex resembles the antigen-binding Fv domains of antibodies and T cell receptors[J]. Proc Natl Acad Sci USA, 2008, 105(8): 3011-3016. DOI: 10.1073/pnas.0712278105.

34.Maher CM, Thomas JD, Haas DA, et al. Small-molecule sigma1 modulator induces autophagic degradation of PD-L1[J]. Mol Cancer Res, 2018, 16(2): 243-255. DOI: 10.1158/1541-7786.MCR-17-0166.

35.Sandri M. Protein breakdown in cancer cachexia[J]. Semin Cell Dev Biol, 2016, 54: 11-19. DOI: 10.1016/j.semcdb.2015.11.002.

36.Dockendorff C, Gandhi DM, Kimball IH, et al. Synthetic analogues of the snail toxin 6-Bromo-2-mercaptotryptamine dimer (BrMT) reveal that lipid bilayer perturbation does not underlie its modulation of voltage-gated potassium channels[J]. Biochemistry, 2018, 57(18): 2733-2743. DOI: 10.1021/acs.biochem.8b00292.

37.Dömling A, Holak TA. Programmed death-1: therapeutic success after more than 100 years of cancer immunotherapy[J]. Angew Chem Int Ed Engl, 2014, 53(9): 2286-2288. DOI: 10.1002/anie.201307906.

38.Eggermont AMM, Kicinski M, Blank CU, et al. Association between immune-related adverse events and recurrence-free survival among patients with stage III melanoma randomized to receive pembrolizumab or placebo: a secondary analysis of a randomized clinical trial[J]. JAMA Oncol, 2020, 6(4): 519-527. DOI: 10.1001/jamaoncol.2019.5570.

39.Lai AC, Crews CM. Induced protein degradation: an emerging drug discovery paradigm[J]. Nat Rev Drug Discov, 2017, 16(2): 101-114. DOI: 10.1038/nrd.2016.211.

40.Liang J, Wang L, Wang C, et al. Verteporfin Inhibits PD-L1 through Autophagy and the STAT1-IRF1-TRIM28 signaling axis, exerting antitumor efficacy[J]. Cancer Immunol Res, 2020, 8(7): 952-965. DOI: 10.1158/2326-6066.CIR-19-0159.

41.Liang MQ, Yu FQ, Chen C. C-Myc regulates PD-L1 expression in esophageal squamous cell carcinoma[J]. Am J Transl Res, 2020, 12(2): 379-388. https://pubmed.ncbi.nlm.nih.gov/32194890/.

42.Liu Y, Zheng MZ, Ma ZL, et al. Design, synthesis, and evaluation of PD-L1 degraders to enhance T cell killing activity against melanoma[J]. Chinese Chem Lett, 2023, 34(5): 107762. DOI: 10.1016/j.cclet.2022.107762.

43.Wang Y, Zhou Y, Cao S, et al. In vitro and in vivo degradation of programmed cell death ligand 1 (PD-L1) by a proteolysis targeting chimera (PROTAC)[J]. Bioorg Chem, 2021, 111: 104833. DOI: 10.1016/j.bioorg.2021.104833.

44.Su W, Tan M, Wang Z, et al. Targeted degradation of PD-L1 and activation of the STING pathway by carbon-dot-based PROTACs for cancer immunotherapy[J]. Angew Chem Int Ed Engl, 2023, 62(11): e202218128. DOI: 10.1002/anie.202218128.

45.Wang H, Yao H, Li C, et al. HIP1R targets PD-L1 to lysosomal degradation to alter T cell-mediated cytotoxicity[J]. Nat Chem Biol, 2019, 15(1): 42-50. DOI: 10.1038/s41589-018-0161-x.

46.Zheng J, He W, Li J, et al. Bifunctional compounds as molecular degraders for integrin-facilitated targeted protein degradation[J]. J Am Chem Soc, 2022, 144(48): 21831-21836. DOI: 10.1021/jacs.2c08367.

47.符基定, 曾丽斯, 林颉, 等. SOCS3调控JAK/STAT3通路对PD-1/PD-L1抑制剂所致小鼠心脏毒性的影响[J]. 西部医学, 2024, 36(3): 338-343, 350. [Fu JD, Zeng LS, Lin J, et al. Effect of SOCS3 regulated JAK/STAT3 pathway on PD-1/PD-L1 inhibitor-induced cardiotoxicity in mice[J]. Medical Journal of West China, 2024, 36(3): 338-343, 350.] DOI: 10.3969/j.issn.1672-3511.2024.03.005.

48.康丽梅, 刘欢, 黄靖, 等. 程序性死亡蛋白1/程序性死亡蛋白配体1抑制剂相关血管炎的文献评价与现状分析[J]. 华西医学, 2023, 38(2): 252-260. [Kang LM, Liu H, Huang J, et al. Literature evaluation and current status of programmed death 1 / programmed death-ligand 1 inhibitor-associated vasculitis[J]. West China Medical Journal, 2023, 38(2): 252-260.] DOI: 10.7507/1002-0179.202205100.

49.江莹, 张宁萍, 许青, 等. 65例程序性细胞死亡蛋白-1抑制药介导肝损伤患者的临床特点及预后分析[J].药物流行病学杂志, 2022, 31(10): 669-673, 712. [Jiang Y, Zhang NP, Xu Q, et al. Analysis of clinical characteristics and prognisis of 65 patients with liver injury induced by PD-1 Inhibitor[J]. Chinese Journal of Pharmacoepidemiology, 2022, 31(10): 669-673, 712.] DOI: 10.19960/j.cnki.issn1005-0698.2022.10.004.

Popular papers
Last 6 months