Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 28,2024 No.4 Detail

Effects of follicle stimulating hormone on TGF-β signal transduction in human ovarian granulosa KGN cells

Published on Jan. 05, 2025Total Views: 447 times Total Downloads: 62 times Download Mobile

Author: ZHANG Minglu 1, 2 WEN Miao 1, 3 YANG Zean 1 YU Sisi 1, 4 ZHANG Yuan 1 WU Yanlin 1

Affiliation: 1. National Institutes for Food and Drug Control, Beijing 102629, China 2. Henan Institute of Drug and Medical Device Inspection, Zhengzhou 450018, China 3. School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China 4. School of Life Sciences and Biopharmaceutical, Shenyang Pharmaceutical University, Shenyang 117004, China

Keywords: Follicle stimulating hormone Transforming growth factor-β signaling pathway Human ovarian granulosa cells Gene chip Mitogen-activated protein kinases pathway GO functional annotation KEGG signaling pathway enrichment analysis Smad protein

DOI: 10.12173/j.issn.2097-4922.202405114

Reference: ZHANG Minglu, WEN Miao, YANG Zean, YU Sisi, ZHANG Yuan, WU Yanlin.Effects of follicle stimulating hormone on TGF-β signal transduction in human ovarian granulosa KGN cells[J].Yaoxue QianYan Zazhi,2024, 28(4):663-670.DOI:10.12173/j.issn.2097-4922.202405114. [Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Objective  Using protein chip technology to investigate the effects of follicle stimulating hormone (FSH) on the transforming growth factor (TGF)-β signaling pathway of ovarian granulosa cells (KGN) at different times.

Methods  After FSH stimulation of KGN cells for 3, 6, 12, 24, 48, and 72 hours, the cells were collected and the differences in protein phosphorylation levels at different time points were investigated. GO functional annotation and KEGG signaling pathway enrichment analysis were performed on the differences in protein phosphorylation levels.

Results  FSH can mediate the conduction of TGF-β pathway and promote DNA synthesis in granulosa cells. After 3 and 12 hours of FSH action on KGN cells, the phosphorylation level of downstream factor Smad protein in the TGF- pathway increased. GO enrichment analysis revealed that phosphorylated Smad is involved in functions such as complex assembly and signal transduction. At 24 and 48 hours of action, the mitogen-activated protein kinase pathway was positively regulated, and downstream factors such as cAMP-dependent transcription factor 2, c-Jun, and c-Fos showed an increased degree of phosphorylation, indicating that in addition to being related to the Smad dependent TGF-β pathway, the non Smad dependent TGF-β pathway was also upregulated. After 12 hours, the enrichment of inhibitory I-Smad function was observed, indicating that it began to negatively regulate the TGF-β pathway, competitively bind with R-Smad, and block TGF-β signaling. As the duration of FSH action increases, the impact on the TGF-β signaling pathway gradually decreases.

Conclusion  FSH can mediate the transmission of TGF-β signaling pathway in KGN cells, promoting subsequent series of reactions.

Full-text
Please download the PDF version to read the full text: download
References

1.吴彦霖, 张铭露, 张媛, 等. 基于人卵巢颗粒细胞KGN建立的卵泡刺激素体外生物活性效价测定法[J]. 中国新药杂志, 2021, 30(14): 1316-1322. [Wu YL, Zhang  ML, Zhang Y, et al A method for determining the in vitro bioactivity and potency of follicle stimulating hormone based on human ovarian granulosa cell KGN[J]. Chinese Journal of New Drugs, 2021, 30(14): 1316-1322.] DOI: 10.3969/j.issn.1003-3734.2021.14.011.

2.阮鑫, 董晓英. 卵泡发育过程中的细胞间通讯[J]. 医学研究杂志, 2022, 51(6): 177-180. [Ruan X, Dong XY. Intercellular communication during follicular development[J] Journal of Medical Research, 2022, 51(6): 177-180.] DOI: 10.11969/j.issn.1673-548X.2022.06.037.

3.Li Q, Huo Y, Wang S, et al. TGF-β1 regulates the lncRNA transcriptome of ovarian granulosa cells in a transcription activity-dependent manner[J]. Cell Prolif, 2023, 56(1): e13336. DOI: 10.1111/cpr.13336.

4.李清春, 李梦寻, 徐梦思, 等. TGFβRⅠ、TGFβRⅡ、FSH和TGFβ1对猪颗粒细胞增殖凋亡的影响[J]. 中国畜牧杂志, 2023, 59(3): 196-203. [Li QC, Li MX, Xu  MS, et al. The effect of TGF R1, TGF R2, FSH, and TGFβ1 on the proliferation and apoptosis of pig granulosa cells[J]. Chinese Journal of Animal Husbandry, 2023, 59(3): 196-203.] DOI: 10.19556/j.0258-7033.20220301-04.

5.McDonald R, Sadler C, Kumar TR. Gain-of-function genetic models to study fsh action[J]. Front Endocrinol, 2019, 10: 28. DOI: 10.3389/fendo.2019.00028.

6.Wang HQ, Zhang WD, Yuan B, et al. Advances in the regulation of mammalian follicle-stimulating hormone secretion[J]. Animals, 2021, 11(4): 1134. DOI: 10.3390/ani11041134.

7.Alfradique VAP, Netto DLS, Alves SVP, et al. The impact of FSH stimulation and age on the ovarian and uterine traits and histomorphometry of prepubertal gilts[J]. Domest Anim Endocrinol, 2023, 83: 106786. DOI: 10.1016/j.domaniend.2023.106786.

8.Chu YL, Xu YR, Yang WX, et al. The role of FSH and TGF-β superfamily in follicle atresia[J]. Aging, 2018, 10(3): 305-321. DOI: 10.18632/aging.101391.

9.Liu L, Li Q, Yang L, et al. SMAD4 feedback activates the canonical TGF-β family signaling pathways[J]. Int J Mol Sci, 2021, 22(18): 10024. DOI: 10.3390/ijms221810024.

10.Antebi YE, Linton JM, Klumpe H, et al. Combinatorial signal perception in the BMP pathway[J]. Cell, 2017, 170(6): 1184-1196. e24. DOI: 10.1016/j.cell.2017.08.015.

11.徐梦思. TGF β-SMAD信号通路对猪颗粒细胞和繁殖性状的作用研究[D]. 新疆石河子: 石河子大学, 2016. DOI: 10.7666/d.D718150.

12.袁丽娟. TGF-β和Smad4在绝经过渡期大鼠卵巢及其颗粒细胞中的表达变化[D]. 河北张家口: 河北北方学院, 2017. DOI: 10.7666/d.Y3301761.

13.卫晓红, 祁丽花, 徐健, 等. 卵泡刺激素调节大鼠卵巢颗粒细胞中Smad2/Smad3蛋白的表达及磷酸化[J]. 解剖学杂志, 2008, 31(2): 141-144. [Wei XH, Qi LH, Xu J, et al. Follicle stimulating hormone regulates the expression and phosphorylation of Smad2/Smad3 protein in rat ovarian granulosa cells[J]. Journal of Anatomy, 2008, 31(2): 141-144.] DOI: 10.3969/j.issn.1001-1633.2008.02.001.

14.王雨桐, 卫晓红, 葛玲, 等. 转化生长因子β信号通路对卵泡刺激素调节卵巢颗粒细胞功能的影响[J]. 解剖学报, 2021, 52(1): 118-123. [Wang YT, Wei XH, Ge L, et al. The effect of transforming growth factor β signaling pathways on the regulation of ovarian granulosa cell function by follicle stimulating hormone[J]. Journal of Anatomy, 2021, 52(1): 118-123.] DOI: 10.16098/j.issn.0529-1356.2021.01.019.

15.习玥玥, 周素, 王世宣. 转化生长因子β超家族与卵巢疾病[J]. 医学研究杂志, 2017, 46(12): 15-18, 2. [Xi YY, Zhou S, Wang SX. Transforming growth factor β superfamily and ovarian diseases[J]. Journal of Medical Research, 2017, 46 (12): 15-18, 2.] DOI: 10.11969/j.issn.1673-548X.2017.12.005.

16.Liu Y, Chen X, Xue X, et al. Effects of Smad3 on the proliferation and steroidogenesis in human ovarian luteinized granulosa cells[J]. IUBMB Life, 2014, 66(6): 424-437. DOI: 10.1002/iub.1280.

17.Pangas SA, Matzuk MM. Genetic models for transforming growth factor beta superfamily signaling in ovarian follicle development[J]. Mol Cell Endocrinol, 2004, 225(1-2): 83-91. DOI: 10.1016/j.mce.2004.02.017.

18.Gong X, McGee EA. Smad3 is required for normal follicular follicle-stimulating hormone responsiveness in the mouse1[J]. Biol Reprod, 2009, 81(4): 730-738. DOI: 10.1095/biolreprod.108.070086.

19.Shen H, Wang Y. Activation of TGF-β1/Smad3 signaling pathway inhibits the development of ovarian follicle in polycystic ovary syndrome by promoting apoptosis of granulosa cells[J]. J Cell Physiol, 2019, 234(7): 11976-11985. DOI: 10.1002/jcp.27854.

20.Li Q, Du X, Wang L, et al. TGF-β1 controls porcine granulosa cell states: a miRNA-mRNA network view[J]. Theriogenology, 2021, 160: 50-60. DOI: 10.1016/j.theriogenology.2020.11.001.

21.Mattar D, Samir M, Laird M, et al. Modulatory effects of TGF-β1 and BMP6 on thecal angiogenesis and steroidogenesis in the bovine ovary[J]. Reproduction, 2020, 159(4): 397-408. DOI: 10.1530/REP-19-0311.

22.Li H, Chang H, Shi Z, et al. The p38 signaling pathway mediates the TGF-β1-induced increase in type I collagen deposition in human granulosa cells[J]. FASEB J, 2020, 34(11): 15591-15604. DOI: 10.1096/fj.202001377R.

23.Li M, Liang W, Luo Y, et al. Transforming growth factor-β1 mediates the SMAD4/BMF pathway to regulate ovarian granulosa cell apoptosis in small tail Han sheep[J]. Theriogenology, 2024, 214: 360-369. DOI: 10.1016/j.theriogenology.2023.11.009.

24.Chong Z, Dong P, Riaz H, et al. Disruption of follistatin by RNAi increases apoptosis, arrests S-phase of cell cycle and decreases estradiol production in bovine granulosa cells[J]. Anim Reprod Sci, 2015, 155: 80-88. DOI: 10.1016/j.anireprosci.2015.02.003.

25.Simoni M, Brigante G, Rochira V, et al. Prospects for FSH treatment of male infertility[J]. JCEM, 2020, 105(7): 2105-2118. DOI: 10.1210/clinem/dgaa243.

26.Casarini L, Crépieux P, Reiter E, et al. FSH for the treatment of male infertility[J]. Int J Mol Sci, 2020, 21(7): 2270. DOI: 10.3390/ijms21072270.

27.Practice Committees of the American Society for Reproductive Medicine and Society for Reproductive Endocrinology and Infertility. Use of exogenous gonadotropins for ovulation induction in anovulatory women: a committee opinion[J]. Fertil Steril, 2020, 113(1): 66-70. DOI: 10.1016/j.fertnstert.2019.09.020.

28.Kenny HA, Chiang CY, White EA, et al. Mesothelial cells promote early ovarian cancer metastasis through fibronectin secretion[J]. J Clin Invest, 2014, 124(10): 4614-4628. DOI: 10.1172/JCI74778.

29.Bernard DJ. Both SMAD2 and SMAD3 mediate activin-stimulated expression of the follicle-stimulating hormone β subunit in mouse gonadotrope cells[J]. Mol Endocrinol, 2004, 18(3): 606-623. DOI: 10.1210/me.2003-0264.

30.Hamil KG, Conti M, Shimasaki S, et al. Follicle-stimulating hormone regulation of AP-1: inhibition of c-jun and stimulation of jun-B gene transcription in the rat Sertoli cell[J]. Mol Cell Endocrinol, 1994, 99(2): 269-277. DOI: 10.1016/0303-7207(94)90017-5.

Popular papers
Last 6 months