Objective To investigate the mechanism by which the microtubule inhibitor VERU-111 inhibits epithelial-mesenchymal transition (EMT) through regulation of the transforming growth factor-β (TGF-β) pathway, thereby reducing the proliferation and metastasis of ovarian cancer cells.
Methods Ovarian cancer cell lines OVCAR3 and SKOV3 were used as research subjects. The cells were divided into four groups: the control group, the low-dose VERU-111 group, the high-dose VERU-111 group, and TGF-β activator group. Cell proliferation was assessed using the MTT assay, colony formation assay was used to evaluate clonogenic ability, and migration assay was used to analyze cell migratory characteristics. Western blotting was used to detect proteins related to the TGF-β signaling pathway and EMT markers.
Results Compared with the control group, VERU-111 treatment significantly reduced the proliferation, colony formation, and migration abilities of OVCAR3 and SKOV3 ovarian cancer cells (P<0.05). Additionally, VERU-111 markedly inhibited the phosphorylation levels of key proteins in the TGF-β and its downstream signaling pathways, such as Smad2/3, and decreased the expression of mesenchymal markers, such as N-cadherin and vimentin. It also increased the expression of the epithelial marker E-cadherin (P<0.05).
Conclusion The microtubule inhibitor VERU-111 significantly suppresses the proliferation and migration of ovarian cancer cells OVCAR3 and SKOV3 by regulating the TGF-β pathway to inhibit the EMT process, suggesting its potential therapeutic application value.
1.符山花, 包利利, 赵达, 等. ABT-737对M2型TAM来源外泌体处理的卵巢癌细胞SKOV3自噬性凋亡与干性特征的影响[J]. 西部医学, 2023, 35(5): 654-661, 669. [Fu SH, Bao LL, Zhao D, et al. Effects of ABT-737 on autopay apoptosis and stemness chrematistics of SKOV3 ovarian cancer cells treated with M2 tumor-associated macrophage-derived exosomes[J]. Medical Journal of West China, 2023, 35(5): 654-661, 669.] DOI: 10.3969/j.issn.1672-3511.2023.05.005.
2.陈小英, 柯瑶, 刘夏, 等. 环状RNA调控卵巢癌及其化疗耐药的研究进展[J]. 中国现代医学杂志, 2024, 34(6): 46-53. [Chen XY, Ke Y, Liu X, et al. Progress in roles of circular RNAs in regulating development and chemoresistance of ovarian cancer[J]. China Journal of Modern Medicine, 2024, 34(6): 46-53.] DOI: 10.3969/j.issn.1005-8982.2024.06.008.
3.Wang J, Miller DD, Li W. Molecular interactions at the colchicine binding site in tubulin: an X-ray crystallography perspective [J]. Drug Discov Today, 2022, 27(3): 759-776. DOI: 10.1016/j.drudis.2021.12.001.
4.Dhasmana A, Mishra AK, Khoja UB, et al. Molecular structure, spectral analysis and chemical activity of sabizabulin: a computational study[J]. J Mol Graph Model, 2023, 125: 108618. DOI: 10.1016/j.jmgm.2023.108618.
5.Cui H, Wang Q, Miller DD, et al. The tubulin inhibitor VERU-111 in combination with vemurafenib provides an effective treatment of vemurafenib-resistant A375 melanoma[J]. Front Pharmacol, 2021, 12: 637098. DOI: 10.3389/fphar.2021.637098.
6.Mahmud F, Deng S, Chen H, et al. Orally available tubulin inhibitor VERU-111 enhances antitumor efficacy in paclitaxel-resistant lung cancer[J]. Cancer Lett, 2020, 495: 76-88. DOI: 10.1016/j.canlet.2020.09.004.
7.Deng S, Krutilina RI, Wang Q, et al. An orally available tubulin inhibitor, VERU-111, suppresses triple-negative breast cancer tumor growth and metastasis and bypasses taxane resistance[J]. Mol Cancer Ther, 2020, 19(2): 348-363. DOI: 10.1158/1535-7163.MCT-19-0536.
8.Krutilina RI, Hartman KL, Oluwalana D, et al. Sabizabulin, a potent orally bioavailable colchicine binding site agent, suppresses HER2+ breast cancer and metastasis[J]. Cancers (Basel), 2022, 14(21): 5336. DOI: 10.3390/cancers14215336.
9.Kashyap VK, Wang Q, Setua S, et al. Therapeutic efficacy of a novel βIII/βIV-tubulin inhibitor (VERU-111) in pancreatic cancer[J]. J Exp Clin Cancer Res, 2019, 38(1): 29. DOI: 10.1186/s13046-018-1009-7.
10.Markowski MC, Tutrone R, Pieczonka C, et al. A phase Ib/II study of sabizabulin, a novel oral cytoskeleton disruptor, in men with metastatic castration-resistant prostate cancer with progression on an androgen receptor-targeting agent[J]. Clin Cancer Res, 2022, 28(13): 2789-2795. DOI: 10.1158/1078-0432.CCR-22-0162.
11.Waddell S, Zhao G, Liu Z, et al. VERU-111, an orally available tubulin inhibitor, suppresses ovarian tumor growth and metastasis[J]. J Pharmacol Exp Ther, 2025, 392(1): 100006. DOI: 10.1124/jpet.124.002298.
12.Xie W, Yu J, Yin Y, et al. OCT4 induces EMT and promotes ovarian cancer progression by regulating the PI3K/AKT/mTOR pathway[J]. Front Oncol, 2022, 12: 876257. DOI: 10.3389/fonc.2022.876257.
13.Kim N, Hwang CY, Kim T, et al. A cell-fate reprogramming strategy reverses epithelial-to-mesenchymal transition of lung cancer cells while avoiding hybrid states[J]. Cancer Res, 2023, 83(6): 956-970. DOI: 10.1158/0008-5472.CAN-22-1559.
14.Wang Q, Arnst KE, Wang Y, et al. Structural modification of the 3,4,5-trimethoxyphenyl moiety in the tubulin inhibitor VERU-111 leads to improved antiproliferative activities[J]. J Med Chem, 2018, 61(17): 7877-7891. DOI: 10.1021/acs.jmedchem.8b00827.
15.李忆东, 李婷婷, 赵珠峰, 等. miR-296靶向FGFR1对卵巢癌细胞生长、迁移及侵袭的影响[J]. 西部医学, 2023, 35(5): 648-653. [Li YD, Li TT, Zhao ZF, et al. Effect of miR-296 targeting FGFR1 on growth, migration and invasion of ovarian cancer cells[J]. Medical Journal of West China, 2023, 35(5): 648-653.] DOI: 10.3969/j.issn.1672-3511.2023.05.004.
16.Kashyap VK, Dan N, Chauhan N, et al. VERU-111 suppresses tumor growth and metastatic phenotypes of cervical cancer cells through the activation of p53 signaling pathway[J]. Cancer Lett, 2020, 470: 64-74. DOI: 10.1016/j.canlet.2019.11.035.
17.Lu Y, Chen J, Xiao M, et al. An overview of tubulin inhibitors that interact with the colchicine binding site[J]. Pharm Res, 2012, 29(11): 2943-2971. DOI: 10.1007/s11095-012-0828-z.
18.Wang Z, Chen J, Wang J, et al. Novel tubulin polymerization inhibitors overcome multidrug resistance and reduce melanoma lung metastasis[J]. Pharm Res, 2012, 29(11): 3040-3052. DOI: 10.1007/s11095-012-0726-4.
19.Zhang R, Zhao G, Shi H, et al. Zinc regulates primary ovarian tumor growth and metastasis through the epithelial to mesenchymal transition[J]. Free Radic Biol Med, 2020, 160: 775-783. DOI: 10.1016/j.freeradbiomed.2020.09.010.
20.Zhao G, Zhang W, Dong P, et al. EIF5A2 controls ovarian tumor growth and metastasis by promoting epithelial to mesenchymal transition via the TGFβ pathway[J]. Cell Biosci, 2021, 11(1): 70. DOI: 10.1186/s13578-021-00578-5.
21.Wang B, Li H, Zhao X, et al. A luminacin D analog HL142 inhibits ovarian tumor growth and metastasis by reversing EMT and attenuating the TGFβ and FAK pathways[J]. J Cancer, 2021, 12(18): 5654-5663. DOI: 10.7150/jca.61066.
22.Xu D, Dong P, Xiong Y, et al. MicroRNA-361-mediated inhibition of HSP90 expression and EMT in cervical cancer is counteracted by oncogenic lncRNA NEAT1[J]. Cells, 2020, 9(3): 632. DOI: 10.3390/cells9030632.
23.史英, 孙春丽, 王晓明. HOXB9、E-cadherin在子宫内膜癌组织中的表达及其与术后淋巴结转移的关系[J]. 实用癌症杂志, 2024, 39(12): 1980-1983. [Shi Y, Sun CL, Wang XM. Expression of HOXB9 and E-cadherin in endometrial cancer tissues and its correlation with postoperative lymph node metastasis[J]. The Practical Journal of Cancer, 2024, 39(12): 1980-1983.] DOI: 10.3969/j.issn.1001-5930.2024.12.015.
24.陈文灿, 周倜. N-钙黏蛋白功能研究进展[J]. 中山大学学报(医学科学版), 2024, 45(6): 866-875. [Chen WC, Zhou C, Research progress in N-cadherin function[J]. Journal of Sun Yat-sen University (Medical Sciences), 2024, 45(6): 866-875.] DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).20241030.002.
25.van der Net A, Rahman Z, Bordoloi AD, et al. EMT-related cell-matrix interactions are linked to states of cell unjamming in cancer spheroid invasion[J]. iScience, 2024, 27(12): 111424. DOI: 10.1016/j.isci.2024.111424.