Traditional Chinese medicine (TCM) processing holds significant importance in clinical applications. However, the construction of its quality standard system and research on the material basis of its efficacy face numerous challenges, and traditional detection and analysis methods have limitations. Ultra-performance liquid chromatography-mass spectrometry (UPLC- MS) technology has been widesly used in the field of TCM processing due to its advantages of high selectivity, high sensitivity, and excellent separation efficiency. This paper systematically reviews the composition, principles, and common types of UPLC-MS technology, with a primary focus on elaborating its applications in TCM processing, including research progress on the effects of the same processing method and different processing methods on the chemical composition of TCM, as well as the effects of processing on toxic components in TCM, pesticide residues in TCM, and the pharmacokinetics of TCM. UPLC-MS technology enables rapid analysis and precise quantification of complex components during TCM processing, providing a powerful tool for optimizing processing techniques and elucidating processing mechanisms. Nevertheless, this technology also has limitations, such as stringent sample requirements and the susceptibility of trace component detection to instrument sensitivity. In the future, it is expected to further advance the modernization of TCM processing and the establishment of quality evaluation standards by combining with mass spectrometry databases and artificial intelligence technology.
1.梅余琪, 魏丽芳, 邹立思, 等. 鸡血藤中多元活性成分动态积累的分析与评价[J]. 中国中药杂志, 2020, 45(3): 584-595. [Mei YQ, Wei LF, Zou LS, et al. Analysis and evaluation of dynamic accumulation of multiple active components in Spatholobus suberectus[J]. China Journal of Chinese Materia Medica, 2020, 45(3): 584-595.] DOI: 10.19540/j.cnki.cjcmm.20191107.202.
2.王沛, 李建定. UPLC-MS/MS法在药物成分分析领域的应用研究进展[J]. 科技视界, 2015, (25): 319, 329. [Wang P, Li JD. Application research progress of UPLC-MS/MS in pharmaceutical component analysis[J]. Science & Technology Vision, 2015, (25): 319, 329.] DOI: 10.19694/j.cnki.issn2095-2457.2015.25.240.
3.Zhao YY, Lin RC. UPLC-MSE application in disease biomarker discovery: the discoveries in proteomics to metabolomics[J]. Chem Biol Interact, 2014, 215: 7-16. DOI: 10.1016/j.cbi.2014.02.014.
4.Liu G, Qiao S, et al. Simultaneous determination of 18 chemical constituents in traditional Chinese medicine of antitussive by UPLC-MS-MS[J]. J Chromatogr Sci, 2016, 54(9): 1540-1552. DOI: 10.1093/chromsci/bmw099.
5.徐东升, 何云娇, 钟灵佼. UPLC-QQQ-MS/MS在中药分析中的应用研究进展[J]. 中医药临床杂志, 2021, 33(11): 2247-2250. [Xu DS, He YJ, Zhong LJ. Research progress on the application of UPLC-QQQ-MS/MS in traditional Chinese medicine analysis[J]. Journal of Clinical Chinese Medicine, 2021, 33(11): 2247-2250.] DOI: 10.16448/j.cjtcm.2021.1149.
6.Huang H, Liu M, Chen P. Recent advances in ultra-high performance liquid chromatography for the analysis of traditional Chinese medicine[J]. Anal Lett, 2014, 47(11): 1835-1851. DOI: 10.1080/00032719.2014.888727.
7.Jin H, Liu Y, Guo Z, et al. Recent development in liquid chromatography stationary phases for separation of traditional Chinese medicine components[J]. J Pharm Biomed Anal, 2016, 130: 336-346. DOI: 10.1016/j.jpba.2016.06.008.
8.车爽. UPLC-Q-TOF-MS联合UNIFI技术在中药分析领域的应用进展[J]. 天津药学, 2022, 34(3): 67-74. [Che S. Advances in the application of UPLC-Q-TOF-MS combined with UNIFI technology in the field of traditional Chinese medicine analysis[J]. Tianjin Pharmacy, 2022, 34(3): 67-74.] DOI: 10.3969/j.issn.1006-5687.2022.03.016.
9.李书晚, 廖扬振, 王龙飞, 等. 基于UPLC-Q-TOF-MS/MS法、HPLC指纹图谱、含量测定评价覆盆子质量[J]. 中成药, 2025, 47(4): 1077-1084. [Li SW, Liao YZ, Wang LF, et al. Evaluation of Raspberry quality based on UPLC-Q-TOF-MS/MS, HPLC fingerprint, and content determination[J]. Chinese Traditional Patent Medicine, 2025, 47(4): 1077-1084.] DOI: 10.3969/j.issn.1001-1528.2025.04.002.
10.杨红霞, 许文, 黄泽豪. 基于UPLC-Q-TOF-MS/MS的银线莲化学成分分析[J]. 中国现代应用药学, 2025, 42(6): 948-957. [Yang HX, Xu W, Huang ZH. Chemical constituent analysis of Silver-vein orchid (Goodyera schlechtendaliana) based on UPLC-Q-TOF-MS/MS[J]. Chinese Journal of Modern Applied Pharmacy, 2025, 42(6): 948-957.] DOI: 10.13748/j.cnki.issn1007-7693.20232655.
11.王宏宇, 赵思俊, 李存. UPLC-Q-TOF-MS技术在食品中药物残留分析上的应用进展[J]. 动物医学进展, 2020, 41(10): 121-124. [Wang HY, Zhao SJ, Li C. Advances in the application of UPLC-Q-TOF-MS technology for the analysis of veterinary drug residues in food[J]. Progress in Veterinary Medicine, 2020, 41(10): 121-124.] DOI: 10.16437/j.cnki.1007-5038.2020.10.022.
12.赵红霞. 超高效液相色谱-三重四极杆串联质谱(UPLC-QqQ-MS/MS)对农作物中农药多残留的检测研究[D]. 济南: 山东大学, 2013. DOI: 10.7666/d.Y2331950.
13.王琳, 姜大伟, 许海鹏, 等. 超高效液相色谱-三重四极杆质谱法在检测水中农药残留的应用[J]. 中国高新科技, 2021, (19): 94-95. [Wang L, Jiang DW, Xu HP, et al. Application of ultra performance liquid chromatography-triple quadrupole mass spectrometry (UPLC-QqQ-MS) for detection of pesticide residues in water samples[J]. China High and New Technology, 2021, (19): 94-95.] DOI: 10.3969/j.issn.2096-4137.2021.19.045.
14.罗洲飞, 徐梦薇, 陆静, 等. 高效液相色谱-三重四极杆串联质谱测定环境水样中20种环境内分泌干扰物[J]. 环境化学, 2020, 39(7): 1923-1933. [Luo ZF, Xu MW, Lu J, et al. Determination of 20 Environmental endocrine disruptors in environmental water samples by high performance liquid chromatography-triple quadrupole tandem mass spectrometry[J]. Environmental Chemistry, 2020, 39(7): 1923-1933.] DOI: 10.7524/j.issn.0254-6108.2019050706.
15.孙铭, 古其会, 张菊梅, 等. 超高效液相色谱-三重四极杆质谱联用检测饮用水中N-亚硝胺类消毒副产物[J]. 食品科学, 2022, 43(2): 310-315. [Sun M, Gu QH, Zhang JM, et al. Detection of N-nitrosamine disinfection by-products in drinking water by ultra performance liquid chromatography-triple quadrupole mass spectrometry (UPLC-QqQ-MS)[J]. Food Science, 2022, 43(2): 310-315.] DOI: 10.7506/spkx1002-6630-20210425-351.
16.汤钜添, 陈少茹, 张诚光. 基于UPLC-QE-Orbitrap-MS技术鉴定中药三棱入血成分[J]. 深圳中西医结合杂志, 2024, 34(5): 72-74. [Tang JT, Chen SR, Zhang CG. Identification of blood entering components of traditional Chinese medicine Rhizoma sparganiiusing UPLC-QE-Orbitrap-MS technology[J]. Shenzhen Journal of Integrated Traditional Chinese and Western Medicine, 2024, 34(5): 72-74.] DOI: 10.16458/j.cnki.1007-0893.2024.05.021.
17.Chen CL, Chen YT, Liao WY, et al. Urinary metabolomic analysis of prostate cancer by UPLC-FTMS and UPLC-Ion Trap MSn[J]. Diagnostics (Basel), 2023, 13(13): 2270. DOI: 10.3390/diagnostics13132270.
18.Kim JH, Lee Y, Lee G, et al. Quantitative interrelation between atractylenolide I, II, and III in Atractylodes japonica Koidzumi Rhizomes, and evaluation of their oxidative transformation using a biomimetic kinetic model[J]. ACS Omega, 2018, 3(11): 14833-14840. DOI: 10.1021/acsomega.8b02005.
19.胡振宇, 卜俊文, 吴宇, 等. 基于UPLC-LTQ-Orbitrap MS技术分析醋润蜜麸炒柴胡炮制过程中成分差异[J]. 中草药, 2025, 56(9): 3109-3120. [Hu ZY, Bu JW, Wu Y, et al. Analyzing differences in components of Bupleuri radix by vinegar wetting and honey bran fried during processing based on UPLC-LTQ-Orbitrap MS[J]. Chinese Traditional and Herbal Drugs, 2025, 56(9): 3109-3120.] DOI: 10.7501/j.issn.0253-2670.2025.09.009.
20.Zhang W, Ren K, Ren S, et al. UPLC-Q-exactive-MS analysis for hepatotoxicity components of Evodiae fructus based on spectrum-toxicity relationship[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2021, 1176: 122772. DOI: 10.1016/j.jchromb.2021.122772.
21.Yang R, Zhang Y, Wang L, et al. UPLC-Q-exactive/MS-based metabonomics revealed protective effect of Zingiberis rhizome and its processed product on deficiency-cold and hemorrhagic syndrome rats[J]. Biomed Chromatogr, 2022, 36(8): e5412. DOI: 10.1002/bmc.5412.
22.任天航, 李喆, 廉婧, 等. UPLC-MS法测定酸枣仁炮制前后的12种成分[J]. 华西药学杂志, 2023, 38(3): 300-305. [Ren TH, Li Z, Lian J, et al. Determination of 12 components in Ziziphi spinosae semen before and after processing by UPLC-MS[J]. West China Journal of Pharmaceutical Sciences, 2023, 38(3): 300-305.] DOI: 10.13375/j.cnki.wcjps.2023.03.014.
23.昝珂, 李耀磊, 王丹丹, 等. UPLC-MS/MS法测定炮制前后款冬花中款冬碱的含量[J]. 中国民族民间医药, 2021, 30(20): 28-31. [Zan K, Li YL, Wang DD, et al. Determination of tussilagone in Tussilago farfara before and after processing by UPLC-MS/MS[J]. Chinese Journal of Ethnomedicine and Ethnopharmacy, 2021, 30(20): 28-31.] DOI: 10.3969/j.issn.1007-8517.2021.20.zgmzmjyyzz202120008.
24.张凡, 张诗雯, 李金昱, 等. UPLC-QTOF-MS结合主成分分析法考察生晒参与红参的化学成分差异[J]. 中华中医药学刊, 2022, 40(2): 75-81. [Zhang F, Zhang SW, Li JY, et al. Investigation on chemical composition differences between sun-dried ginseng and red ginseng using UPLC-QTOF-MS combined with principal component analysis[J]. Chinese Journal of Traditional Chinese Medicine, 2022, 40(2): 75-81.] DOI: 10.13193/j.issn.1673-7717.2022.02.017.
25.陈佩东, 徐丹洋, 李芳, 等. UPLC-MS法分析黄芩炮制前后化学成分变化[J]. 中成药, 2013, 35(4): 784-788. [Chen PD, Xu DY, Li F, et al. Analysis of chemical composition changes in Scutellaria baicalensis before and after processing using UPLC-MS[J]. Chinese Traditional Patent Medicine, 2013, 35(4): 784-788.] DOI: 10.3969/j.issn.1001-1528.2013.04.035.
26.管汉亮, 钱大玮, 段金廒, 等. 银杏叶干燥方法的优化及其机制探讨[J]. 中国中药杂志, 2013, 38(13): 2140-2146. [Guan HL, Qian DW, Duan JA, et al. Study on optimization of drying method and its mechanism in Ginkgo biloba leaves[J]. China Journal of Chinese Materia Medica, 2013, 38(13): 2140-2146.] DOI: 10.4268/cjcmm20131321.
27.邵长鑫, 林欢欢, 靳晓杰, 等. 黄芪的炮制历史沿革及现代研究进展[J]. 中草药, 2023, 54(15): 5057-5074. [Shao CX, Lin HH, Jin XJ, et al. Historical evolution and modern research progress of processing of Astragalus membranaceus (Huangqi)[J].Chinese Traditional and Herbal Drugs, 2023, 54(15): 5057-5074.] DOI: 10.7501/j.issn.0253-2670.2023.15.030.
28.刘蓬蓬, 单国顺, 张凡, 等. UPLC-MS比较有机酸定向炮制黄芪中12种活性成分的含量[J]. 中国中药杂志, 2020, 45(1): 113-118. [Liu PP, Shan GS, Zhang F, et al. Comparison of 12 constituents of Astragali radix directionally processed with organic acid by UPLC-MS[J]. China Journal of Chinese Materia Medica, 2020, 45(1): 113-118.] DOI: 10.19540/j.cnki.cjcmm.20191001.307.
29.Xing X, Sun Z, Yang M, et al. Quantitative Evaluation of twelve Major components of sulfur-fumigated Astragali radix with different durations by UPLC-MS[J]. Molecules, 2018, 23(10): 2609. DOI: 10.3390/molecules23102609.
30.杨璐嘉, 张传洋, 王丽娟, 等. 基于UPLC-Q-Orbitrap HRMS法比较不同炮制方法下山楂化学成分差异[J]. 山东化工, 2023, 52(10): 138-145. [Yang LJ, Zhang CY, Wang LJ, et al. Comparison of chemical composition differences in Crataegus pinnatifidac (Shanzha) under different processing methods based on UPLC-Q-Orbitrap HRMS[J]. Shandong Chemical Industry, 2023, 52(10): 138-145.] DOI: 10.19319/j.cnki.issn.1008-021x.2023.10.009.
31.叶协滔, 钟凌云, 张大永, 等. 基于UPLC/Q-TOF-MS/MS分析川乌生品及其不同炮制品化学成分差异[J]. 中华中医药杂志, 2021, 36(10): 5837-5842. [Ye XT, Zhong LY, Zhang DY, et al. Analysis of chemical composition differences between raw Aconitum carmichaelii (Chuanwu) and its different processed products based on UPLC/Q-TOF-MS/MS[J]. Chinese Journal of Traditional Chinese Medicine, 2021, 36(10): 5837-5842.] https://www.cnki.com.cn/Article/CJFDTotal-BXYY202110029.htm.
32.孙钰婧, 霍志鹏, 王玉, 等. 基于UPLC-Q-TOF/MSE分析不同炮制时间炒车前子的化学成分变化规律[J]. 中国实验方剂学杂志, 2022, 28(4): 146-153. [Sun YJ, Huo ZP, Wang Y, et al. Analysis of chemical component variation patterns in stir-fried Plantago asiatica (Cheqianzi) with different processing times based on UPLC-Q-TOF/MSE[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2022, 28(4): 146-153.] DOI: 10.13422/j.cnki.syfjx.20211761.
33.熊之琦, 李莹, 徐媛, 等. 基于UPLC-Q/TOF-MS研究蚕砂不同炮制品主成分差异[J]. 江西中医药大学学报, 2021, 33(3): 89-94. [Xiong ZQ, Li Y, Xu Y, et al. Study on differences in major components of different processed products of Bombyx batryticatus based on UPLC-Q/TOF-MS [J]. Journal of Jiangxi University of Traditional Chinese Medicine, 2021, 33(3): 89-94.] https://www.cnki.com.cn/Article/CJFDTOTAL-XYXB202103024.htm.
34.赵琴, 黄惠红, 汪颖舒, 等. UPLC-Q-TOF-MS/MS分析不同黑豆汁蒸制法对何首乌成分的影响[J]. 中成药, 2020, 42(8): 2211-2217. [Zhao Q, Huang HH, Wang YS, et al. Analysis of the effects of different steaming methods with black soybean juice on the components of Fallopia multiflora using UPLC-Q-TOF-MS/MS[J]. Chinese Traditional Patent Medicine, 2020, 42(8): 2211-2217.] DOI: 10.3969/j.issn.1001-1528.2020.08.051.
35.Jiang H, Yang L, Xing X, et al. A UPLC-MS/MS application for comparisons of the hepatotoxicity of raw and processed Xanthii fructus by energy metabolites[J]. RSC Adv, 2019, 9(5): 2756-2762. DOI: 10.1039/c8ra08272c.
36.Sun LM, Zhang B, Wang YC, et al. Metabolomic analysis of raw Pinelliae rhizoma and its alum-processed products via UPLC-MS and their cytotoxicity[J]. Biomed Chromatogr, 2019, 33(2): e4411. DOI: 10.1002/bmc.4411.
37.Sun W, Yan B, Wang R, et al. In vivo acute toxicity of detoxified fuzi (lateral root of Aconitum carmichaeli) after a traditional detoxification process[J]. EXCLI J, 2018, 17: 889-899. DOI: 10.17179/excli2018-1607.
38.He H, Gao F, Zhang Y, et al. Effect of processing on the reduction of pesticide residues in a traditional Chinese medicine (TCM)[J]. Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 2020, 37(7): 1156-1164. DOI: 10.1080/19440049.2020.1748725.
39.Liu Y, Zheng Z, Liu H, et al. Residual change of four pesticides in the processing of Pogostemon cablin and associated factors[J]. Molecules, 2023, 28(18): 6675. DOI: 10.3390/molecules28186675.
40.Dong J, Yin Z, Su L, et al. Comparative pharmacokinetic analysis of raw and steamed Panax notoginseng roots in rats by UPLC-MS/MS for simultaneously quantifying seven saponins[J]. Pharm Biol, 2021, 59(1): 653-661. DOI: 10.1080/13880209.2021.1928239.
41.Xu S, Qi X, Liu Y, et al. UPLC-MS/MS of atractylenolide I, atractylenolide II, atractylenolide III, and atractyloside A in rat plasma after oral administration of raw and wheat bran-processed Atractylodis rhizoma[J]. Molecules, 2018, 23(12): 3234. DOI: 10.3390/molecules23123234.
42.Cao M, Liu Y, Jiang W, et al. UPLC/MS-based untargeted metabolomics reveals the changes of metabolites profile of Salvia miltiorrhiza bunge during Sweating processing[J]. Sci Rep, 2020, 10(1): 19524. DOI: 10.1038/s41598-020-76650-w.
43.Tao Y, Huang S, Yan J, et al. Establishment of a rapid and sensitive UPLC-MS/MS method for pharmacokinetic determination of nine alkaloids of crude and processed Corydalis turtschaninovii Besser aqueous extracts in rat plasma[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2019, 1124: 218-225. DOI: 10.1016/j.jchromb.2019.06.018.
44.Zhao Q, Shan G, Xu D, et al. Simultaneous analysis of twelve bile acids by UPLC-MS and exploration of the processing mechanism of bile arisaema by fermentation[J]. J Anal Methods Chem, 2019, 2019: 2980596. DOI: 10.1155/2019/2980596.
45.Wang X, Yu Y, Pei L,et al. Comparison of the pharmacokinetics of timosaponin AIII, timosaponin BIII, and mangiferin extracted from crude and salt-processed Anemarrhenae rhizoma by UPLC-MS/MS[J]. RSC Adv, 2023, 13(18): 11919-11928. DOI: 10.1039/d2ra07979h.
46.Yu YQ, Yan L, Wang XT, et al. Study on the effects of Chinese materia medica processing on the hypoglycemic activity and chemical composition of Anemarrhenae rhizoma[J]. Evid Based Complement Alternat Med, 2021, 2021: 6211609. DOI: 10.1155/2021/6211609.