Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 29,2025 No.6 Detail

Innoative applications and development trends of rapid detection technologies in pharmaceutical quality supervision

Published on Jun. 28, 2025Total Views: 58 times Total Downloads: 10 times Download Mobile

Author: QIN Chen ZHU Dongliang

Affiliation: The Administration for Drug and Instrument Supervision and Inspection of Xinjiang Military Region, Urumqi 830000, China

Keywords: Pharmaceutical quality supervision Rapid detection technologies Raman spectroscopy Near-infrared spectroscopy High-performance thin-layer chromatography

DOI: 10.12173/j.issn.2097-4922.202504011

Reference: QIN Chen, ZHU Dongliang. Innoative applications and development trends of rapid detection technologies in pharmaceutical quality supervision[J]. Yaoxue QianYan Zazhi, 2025, 29(6): 1057-1064. DOI: 10.12173/j.issn.2097-4922.202504011.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

With the continuous advancement of pharmaceutical quality supervision requirements and the rapid development of the pharmaceutical industry, the limitations of traditional detection methods in terms of timeliness, sensitivity, and intelligence have become increasingly prominent. There is an urgent need to establish highly efficient and reliable quality risk prevention and control systems through technological innovation. This study focused on the innovative applications of rapid detection technologies in pharmaceutical quality supervision. The technical characteristics of novel detection methods, including Raman spectroscopy, near-infrared spectroscopy, HPLC and hyphenated techniques, were systematically analyzed. Furthermore, the existing challenges and issues in China's pharmaceutical rapid detection technologies were investigated from perspectives encompassing biotechnology, chemical technology, spectroscopic technology, and hyphenated techniques. Corresponding strategies to promote the development of rapid detection technologies in China were proposed.

Full-text
Please download the PDF version to read the full text: download
References

1.Ali A, Taha A, Adel A, et al. A quality by design HPLC method for cephalosporin analysis in pharmaceuticals and water samples with environmental impact assessment[J]. Sci Rep, 2025, 15(1): 33. DOI: 10.1038/S41598-024-84647-Y.

2.闵红, 蔡虎, 孙瑶, 等. 药品中金黄色葡萄球菌实时荧光定量PCR精准快检[J]. 陕西师范大学学报(自然科学版), 2024, 52(5): 113-121. [Min H, Cai H, Sun Y, et al. Rapid and accurate detection of Staphylococcus aureus in pharmaceuticals using real-time fluorescent quantitative PCR[J]. Journal of Shaanxi Normal University (Natural Science Edition), 2024, 52(5): 113-121.] DOI: 10.15983/j.cnki.jsnu.2024228.

3.苗爱东, 雷虹, 刘海英. 盐酸赛庚啶片的近红外光谱快速鉴别方法研究[J]. 解放军药学学报, 2023, 36(3): 195-198. [Miao AD, Lei H, Liu HY. A method for qualitative and rapid identification of cyproheptadine hydrochloride tablets by NIR spectra[J]. Pharmaceutical Journal of Chinese People's Liberation Army, 2023, 36(3): 195-198.] DOI: 10.3969/j.issn.1008-9926.2023.03.002.

4.焦慧平, 裴媛媛, 李润甜, 等. 基于近红外光谱结合化学计量学方法的北沙参总多糖含量快速无损分析[J/OL]. 沈阳药科大学学报, 2025-03-19. [Jiao HP, Pei YY, Li RT, et al. Rapid and non-destructive analysis of total polysaccharides in glehnia littoralis using near-infrared spectroscopy combined with chemometrics methods[J/OL]. Journal of Shenyang Pharmaceutical University, 2025-03-19.] DOI: 10.14066/j.cnki.cn21-1349/r.2024.0694.

5.Deepali T, Maridul KC, Ankita M, et al. High-performance thin-layer chromatography-guided chemotaxonomic studies of pharmacologically active steroidal alkaloids in solanum xanthocarpum schrad. & wendl. collected from central india[J]. JPC-J Planar Chromat, 2025, 1(1): 1-9. DOI: 10.1007/S00764-025-00333-3.

6.王珂. 保健食品中非法添加的新型PDE5抑制剂研究及21种PDE5抑制剂表面增强RS数据库的建立[D]. 山西晋中: 山西中医药大学, 2020. DOI: 10.27820/d.cnki.gszxy.2020.000049.

7.Zhang H, Xie JH, Feng Q, et al. High resolution micro-confocal Raman spectrometer-based photo-affinity microarray technology for the investigation of active ingredients-Target protein recognition strategy[J]. Anal Chim Acta, 2023, 1268: 341373. DOI: 10.1016/J.ACA.2023.341373.

8.Vinidu G, Gobika T, Upul N, et al. Application of nanomaterials in surface-enhanced Raman spectroscopy for pesticide detection[J]. Discover Chemistry, 2025, 2(1): 9. DOI: 10.1007/S44371-024-00069-9.

9.Chang BX, Li Z, Ji KD, et al. Rapid quantitative determination of adulteration of camellia oil using portable raman spectroscopy and chemometrics[J]. Processes, 2025, 13(2): 456. DOI: 10.3390/PR13020456.

10.张中湖, 毕宝华, 陆峰, 等. 基于拉曼光谱法的药品物料快速识别系统(MASR)的开发研究[J]. 分析仪器, 2022, (5): 1-5. [Zhang ZH, Bi BH, Lu F, et al. Development of MASR rapid evaluation system for drug material quality based on Raman spectrosco-py[J]. Analytical Instrumentation, 2022, (5), 1-5.] DOI: 10.3969/j.issn.1001 232x.2022.05.001.

11.Alicja T, Kornelia L, Anna J, et al. Application of vibrational spectroscopy supported by theoretical calculations in identification of amorphous and crystalline forms of cefuroxime axetil[J]. The Scientific World J, 2015, 1: 921049. DOI: 10.1155/2015/921049.

12.刘永, 付璐. 拉曼光谱法直接测定甲硝唑片含量[J]. 中国现代应用药学, 2023, 40(2): 219-223. [Liu Y, Fu L. Direct determination of metronidazole tablet content by Raman spectroscopy[J]. Chinese Journal of Modern Applied Pharmacy, 2023, 40(2): 219-223.] DOI: 10.13748/j.cnki.issn1007-7693.2023.02.010.

13.Minh DTC, Tram LTB, Phong NH, et al. Single versus double coffee-ring effect patterns in thin-layer chromatography coupled with surface-enhanced raman spectroscopic analysis of anti-diabetic drugs adulterated in herbal products[J]. Molecules, 2023, 28(14): 1438. DOI: 10.3390/MOLECULES28145492.

14.Erkok SD, Gallois R, Leegwater L, et al. Combining surface-enhanced Raman spectroscopy (SERS) and paper spray mass spectrometry (PS-MS) for illicit drug detection[J]. Talanta, 2024, 278: 126414. DOI: 10.1016/J.TALANTA.2024.126414.

15.Zhang YF, Zhang Y, Sun F, et al. Comparison of benchtop near infrared and micro near infrared spectrometer for quality control of dried ginger and its different degrees of processed products[J]. Spectrosc Lett, 2022, 55(8): 514-526. DOI: 10.1080/00387010.2022.2116457.

16.邵晨阳, 赵一墨, 鹿莉莉, 等. 近红外光谱快速分析技术的应用研究进展[J]. 化学通报, 2024, 87(8): 898-912. [Shao  CY, Zhao YM, Lu LL, et al. Progress in the application of near-infrared spectroscopy for rapid analysis[J]. Chemistry, 2024, 87(8), 898-912.] DOI: 10.14159/j.cnki.0441-3776.2024.08.011.

17.Peng C, Zhang M, Kong M, et al. Integrating deep learning and near-infrared spectroscopy for quality control of traditional Chinese medicine extracts[J]. Microchem J, 2024, 205: 111310. DOI: 10.1016/J.MICROC.2024.111310.

18.Biagi D, Nencioni P, Valleri M, et al. Development of a near infrared spectroscopy method for the in-line quantitative bilastine drug assay during pharmaceutical powders blending[J]. J Pharmaceut Biomed, 2021, 204: 114277. DOI: 10.1016/J.JPBA.2021.114277.

19.Wang K, Wang Z, Xu HM, et al. Experimental study on online detection of near-infrared spectroscopy suitable for continuous drug production[J]. J Drug Deliv Sci Tec, 2025, 104: 106528. DOI: 10.1016/J.JDDST.2024.106528.

20.韩莹, 曾文珊, 欧淑芬, 等. 近红外光谱法快速筛查维D2磷酸氢钙片[J]. 今日药学, 2019, 29(3): 186-188, 191. [Han Y, Zeng WS, Ou SF, et al. Rapid screening of vitamin D2 calcium hydrogen phosphate tablets using near-infrared spectroscopy[J]. Today's Pharmacy, 2019, 29(3): 186-188, 191.] DOI: 10.12048/j.ssn.1674-229X.2019.03.007.

21.郑淑凤, 唐立超, 黄剑英, 等. 甲苯咪唑片中药物活性成分的晶型鉴别[J]. 药物分析杂志, 2019, 39(12): 2268-2272. [Zheng SF, Tang LC, Huang JY, et al. Crystal forms identification of active pharmaceutical ingredient in mebendazole tablets[J]. Chinese Journal of Pharmaceutical Analysis, 2019, 39(12): 2268-2272.] DOI: 10.16155/j.0254-1793.2019.12.21.

22.庄莹, 秦斌, 梁雪, 等. 基于近红外光谱法建模的替米沙坦片快速鉴别及含量预测[J]. 广州化工, 2024, 52(19): 85-88, 114. [Zhuang Y, Qin B, Liang X, et al. Rapid identification and content prediction of telmisartan tablets with model based on near infrared spectroscopy[J]. Guangzhou Chemical Industry, 2024, 52(19): 85-88, 114.] DOI: 10.3969/j.issn.1001-9677.2024.19.024.

23.王洪明, 许学丽, 邵晓玮, 等. 注射用哌拉西林钠他唑巴坦钠的近红外光谱定量模型研究[J]. 分析科学学报, 2025, 41(2): 177-184. [Wang HM, Xu XL, Shao XW, et al. Study on near infrared spectroscopy quantitative model of piperacillin sodium and tazobactam sodium for injection[J]. Journal of Analytical Science, 2025, 41(2): 177-184.] DOI: 10.13526/j.issn.1006-6144.2024.05024.

24.王海燕. NIRS技术对流化床混合过程API含量的在线监测研究[D]. 济南: 山东大学, 2021. DOI: 10.27272/d.cnki.gshdu.2020.004915.

25.Prawez A, Faiyaz S, Mohammed HA, et al. Simultaneous quantification of mefenamic acid and paracetamol in fixed-dose combination tablet dosage forms using the green HPTLC method[J]. Green Process Synth, 2025,14(1): 1. DOI: 10.1515/GPS-2024-0251.

26.Julia B, Alina LM, Claudia C, et al. Scanning of chicoric acid in different parts of Cichorium intybus by high-performance thin-layer chromatography with quantitation by image analysis[J]. JPC-J Planar Chromat, 2025, 2025: 491-497. DOI: 10.1007/S00764-025-00332-4.

27.Sushil KC, Evanylla K, Huidrom KS, et al. Capsaicin content in chillies (Capsicum annuum L., Capsicum frutescens L., Capsicum chinense Jacq.) of Northeast India by high performance thin layer chromatography (HPTLC)[J]. Nat Prod Res, 2025, 1(1): 1-9. DOI: 10.1080/14786419.2025.2450220.

28.Pratiksha PB, Hardik GB. Sustainable quantitative analysis of dasatinib monohydrate using green RP- and NP-HPTLC methods in API and formulation with greenness evaluation by AGREE tool[J]. Sustain Chem Pharm, 2025, 44: 101966. DOI: 10.1016/j.scp.2025.101966.

29.Shubhangee SG, Pratik VD, Amol SB, et al. Stability-indicating high-performance thin-layer chromatography method development and validation for topiroxostat in bulk and tablet dosage forms using a quality by design approach[J]. Anal Chem, 2024, 79(12): 1865-1877. DOI: 10.1134/S1061934824701442.

Katarzyna BM, Alina PP. Comparison of the limit of detection of paracetamol, propyphenazone, and caffeine analyzed using thin-layer chromatography and high-performance thin-layer chromatography[J]. Processes, 2024, 12(6): 1153. DOI: 10.3390/PR12061153.

30.Enot MM, Sabesaje RD, Presores GMS, et al. Development of an identification method for fern extracts using high-performance thin-layer chromatography (HPTLC)[J]. JPC-J Planar Chromat, 2022, 35(5): 491-500. DOI: 10.1007/S00764-022-00204-1.

31.Miniyar PB, Chavan PD, Patil SP, et al. High-performance thin-layer chromatography-based method development for the analysis of 4-methoxy-2-nitroaniline as potential genotoxic impurity[J]. JPC-J Planar Chromat, 2022, 35(1): 73-81. DOI: 10.1007/S00764-022-00158-4.

32.Sikdar KMYK, Md KL, Tomislav S, et al. A validated high-performance thin-layer chromatography method for analyzing fat-soluble vitamins in commercial pharmaceutical preparations[J]. Applied Sci, 2024, 14(23): 11064. DOI: 10.3390/APP142311064.

33.赵琪, 张珊珊, 冯哲玺, 等. 缓解体力疲劳类中成药及保健食品中非法添加化学药物高通量筛查模式的建立[J]. 中南药学, 2025, 23(3): 745-755. [Zhao Q, Zhang SS, Feng ZX, et al. Establishment of a high-throughput screening model for adulterated chemical drugs in anti-fatigue traditional Chinese medicines and health foods[J]. Central South Pharmacy, 2025, 23(3): 745-755.] DOI: 10.7539/j.issn.1672-2981.2025.03.026.

34.覃蓝, 王华, 杨梓莹, 等. 超高效液相色谱三重四极杆质谱联用仪测定中成药中的19种非法添加化学药物[J]. 分析仪器, 2024, (6): 17-23. [Qin L, Wang H, Yang ZY, et al. Determination of 19 chemical drugs illegally added in chinese patent medicines by ultra performance liquid chromatography coupled with triple quadrupole mass spectrometry[J]. Analytical Instruments, 2024, (6):17-23.] DOI: 10.3969/j.issn.1001‐232x.2024.06.004.

35.熊瑛, 洪曼圻. 液相色谱-质谱联用法测定中成药中21种非甾体类抗炎药[J]. 化学分析计量, 2025, 34(4): 25-31. [Xiong Y, Hong MQ. Determination of 21 non-steroidal anti-inflammatory drugs in Chinese patent medicines by liquid chromatography-mass spectrometry[J]. Chemical Analysis and Meterage, 2025, 34(4): 25-31.] DOI: 10.3969/j.issn.1008-6145.2025.04.004.

36.贾文君, 曹玉, 戴震, 等. 基于高效液相色谱-四极杆飞行时间质谱联用技术的依达拉奉注射液杂质谱分析[J].天津师范大学学报, 2025, 45(2): 18-24. [Jia WJ, Cao Y, Dai Z, et al. Analysis of impurity profile of edaravone injection by HPLC-Q-TOF-MS[J]. Journal of Tianjin Normal University (Natural Science Edition), 2025, 45(2): 18-24.] DOI: 10.19638/j.issn1671-1114.20250204.

37.张文慧, 程冬, 陆益红, 等. 应用液相色谱-串联质谱联用技术分析厄贝沙坦及其制剂的杂质谱[J]. 中国药学杂志, 2024, 59(7): 612-626. [Zhang WH, Cheng D, Lu YH, et al. Analysis of impurity profile of irbesartan and its preparations by LC-MS/MS[J]. Chinese Pharmaceutical Journal, 2024, 59(7): 612-626.] DOI: 10.11669/cpj.2024.07.007.

38.郭常川, 文松松, 王维剑, 等. 气相色谱-质谱联用法测定奥美沙坦酯中的基因毒性杂质偶氮二异庚腈[J].分析试验室, 2024, 43(12): 1679-1683. [Guo CC, Wen SS, Wang WJ, et al. Determination of genotoxic impurity azobisisoheptonitrile in olmesartan medoxomil by gas chromatography-mass spectrometry[J]. Analytical Laboratory, 2024, 43(12): 1679-1683.] DOI: 10.13595/j.cnki.issn1000-0720.2023082502.

39.陈健, 唐瑜, 向鹏宇. 气相色谱质谱联用法测定重楼药材中多种农药残留[J]. 中国药业, 2024, 33(22): 108-112. [Chen J, Tang Y, Xiang PY. Determination of Multiple Pesticide Residues in Paridis Rhizoma by Gas Chromatography-Mass Spectrometry[J]. China Pharmaceuticals, 2024, 33(22): 108-112.] DOI: 10.3969/j.issn.1006-4931.2024.22.024.

40.曹依敏, 周恒, 兰岚, 等. 超高效液相色谱-四极杆/静电场轨道阱高分辨质谱法快速测定3种含生物碱类中药材中193种农药残留[J]. 农药学学报, 2022, 24(4): 859-871. [Cao YM, Zhou H, Lan L, et al. A rapid screening method for 193 pesticide residues in 3 traditional Chinese medicines containing alkaloids by ultrahigh-performance liquid chromatography coupled to quadrupole-orbitrap high resolution mass spectrometry[J]. Chinese Journal of Pesticide Science, 2022, 24(4): 859-871.] DOI: 10.16801/j.issn.1008-7303.2022.0035.

Popular papers
Last 6 months