Objective Based on Astral-data-independent acquisition (DIA) proteomics technology, to screen the potential targets of agiophyllum oligo saccharides (AOS) to improve type 2 diabetes mellitus (T2DM) related liver injury, and explore its mechanism.
Methods Twelve db/db mice were randomly divided into a model group, a low-dose AOS group (LAOS, 375 mg/kg), and a high-dose AOS group (HAOS, 750 mg/kg), with 4 mice in each group. Additionally, 4 db/m mice were set as a blank control group. After 8 weeks of intervention, liver tissues were collected for proteomic analysis, and the mechanism of AOS was analyzed using methods such as Venn diagram, KEGG pathway enrichment, gene ontology (GO) annotation, protein-protein interaction (PPI) network, and gene set enrichment analysis (GSEA).
Results 180 differentially expressed proteins were identified in LAOS group. GO analysis showed that they were involved in breakdown and metabolism of cellular amino acid. KEGG suggested that they were related to the pathways of butyric acid metabolism and degradation of valine, leucine and isoleucine. 280 differentially expressed proteins were identified in HAOS group. They were significantly enriched in processes of small molecule metabolism, organic acid metabolism, ketone acid metabolism and carboxylic acid metabolism. KEGG analysis showed that they exerted their effects through regulating the pathways such as metabolic pathways, propionic acid metabolism, carbon metabolism, oxidative phosphorylation, and degradation of valine, leucine and isoleucine. PPI network screened 10 core target proteins including ACSS1, ECHDC1, ECHS1 and so on. GSEA showed that the role of LAOS was related to activation of IFN-γ signaling and hypoxic pathways, while HAOS was involved in pathways of epithelial mesenchymal transition, hypoxia, unfolded protein response, muscle cell generation and protein secretion.
Conclusion AOS might improve liver injury in diabetes by regulating branched chain amino acid metabolism, short chain fatty acid metabolism, pyruvate metabolism and oxidative phosphorylation. Targets such as ACSS1, ECHDC1, ECHS1 etc. were its key action nodes.
1.Sun H, Saeedi P, Karuranga S, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J]. Diabetes Res Clin Pract, 2022, 183: 109119. DOI: 10.1016/j.diabres.2021.109119.
2.何晴. 葛根芩连汤基于铁死亡改善2型糖尿病肝损伤的分子机制[D]. 合肥: 安徽中医药大学, 2024. DOI: 10.26922/d.cnki.ganzc.2024.000229.
3.罗玉. 蛋白组学联合转录组学分析肝母细胞瘤差异蛋白表达及意义的研究[D]. 贵州遵义: 遵义医科大学, 2022. DOI: 10.27680/d.cnki.gzyyc.2022.000070.
4.郑淇, 卢意, 于栋华, 等. 基于DIA蛋白质组学探讨刺五加提取物治疗转基因帕金森小鼠的作用机制[J]. 中国实验方剂学杂志, 2025, 31(8): 40-50. [Zheng Q, Lu Y, Yu DH, et al. DIA proteomics reveals mechanism of acanthopanacis senticosi radix et rhizoma seu caulis extract in treating α-syn transgenic parkinson's disease in mice[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2025, 31(8): 40-50.] DOI: 10.13422/j.cnki.syfjx.20250108.
5.Stewart HI, Grinfeld D, Giannakopulos A, et al. Parallelized acquisition of orbitrap and astral analyzers enables high-throughput quantitative analysis[J]. Anal Chem, 2023, 95(42): 15656-15664. DOI: 10.1021/acs.analchem.3c02856.
6.包书茵. 蒙药沙蓬粗寡糖调控糖脂代谢紊乱抑制T2DM-NAFLD发生发展的机制研究[D]. 吉林延边: 延边大学, 2022. DOI: 10.27439/d.cnki.gybdu.2022.000038.
7.包书茵, 韩淑英, 朝日雅, 等. 沙蓬粗寡糖对GK大鼠肝、肾保护作用及机制探讨[J]. 中国药理学通报, 2018, 34(1): 147-148. [Bao SY, Han SY, Chao RY, et al. The protective effects of Agiophyllum Oligo saccha-rides on rat liver and kidney[J]. Chinese Pharmacological Bulletin, 2018, 34(1): 147-148.] DOI: 10.3969/j.issn.1001-1978.2018.01.031.
8.包书茵, 韩淑英, 王胡格吉乐图, 等. 沙蓬粗寡糖对糖尿病GK大鼠一般表征和糖脂代谢的改善作用[J]. 吉林大学学报(医学版), 2016, 42(6): 1059-1065. [Bao SY, Han SY, Wang HJ, et al. Improvement effects of agiophyllum oligosaccharides on generalcharacterization and glucose and lipid metabolism of diabetic GK rats[J]. Journal of Jilin University (Medicine Edition), 2016, 42(6): 1059-1065.] DOI: 10.13481/j.1671-587x.20160604.
9.Bao S, Wu YL, Wang X, et al. Agriophyllum oligosaccharides ameliorate hepatic injury in type 2 diabetic db/db mice targeting INS-R/IRS-2/PI3K/AKT/PPAR-γ/Glut4 signal pathway[J]. J Ethnopharmacol, 2020, 257: 112863. DOI: 10.1016/j.jep.2020.112863.
10.Bao S, Wang X, Cho SB, et al. Agriophyllum oligosaccharides ameliorate diabetic insulin resistance through INS-R/IRS/Glut4-mediated insulin pathway in db/db mice and MIN6 cells[J]. Front Pharmacol, 2021, 12: 656220. DOI: 10.3389/fphar.2021.656220.
11.Suriano F, Vieira-Silva S, Falony G, et al. Novel insights into the genetically obese (ob/ob) and diabetic (db/db) mice: two sides of the same coin[J]. Microbiome, 2021, 9(1): 147. DOI: 10.1186/s40168-021-01097-8.
12.陆源源, 喻嵘, 向琴, 等. 左归降糖清肝方对MKR鼠2型糖尿病合并非酒精性脂肪性肝损伤的影响[J]. 时珍国医国药, 2024, 35(7): 1547-1551. [Lu YY, Yu R, Xiang Q, et al. Zuogui Jiangtang Qinggan prescription on type 2 diabetes in MKR mice[J]. Lishizhen Medicine and Materia Medica Research, 2024, 35(7): 1547-1551.] DOI: 10.3969/j.issn.1008-0805.2024.07.03.
13.柳白乙拉, 武绍新, 主编. 中华本草: 蒙药卷[M]. 上海: 上海科学技术出版社, 2004: 236.
14.朱亚民, 主编. 内蒙古植物药志: 第1卷[M]. 呼和浩特: 内蒙古人民出版社, 2000: 299.
15.占布拉道尔吉, 主编. 无误蒙药鉴[M]. 呼和浩特: 内蒙古人民出版社, 1988: 144.
16.郁静雯, 杜雨桥, 季旭明, 等. 中医药治疗2型糖尿病并发肝损伤相关机制研究进展[J]. 中草药, 2025, 56(6): 2214-2223. [Yu JW, Du YQ, Ji XM, et al. Research progress on traditional Chinese medicine in treating type 2 diabetes mellitus with liver injury[J]. Chinese Traditional and Herbal Drugs, 2025, 56(6): 2214-2223.] DOI: 10.7501/j.issn.0253-2670.2025.06.032.
17.Zhou M, Shao J, Wu CY, et al. Targeting BCAA catabolism to treat obesity-associated insulin resistance[J]. Diabetes, 2019, 68(9): 1730-1746. DOI: 10.2337/db18-0927.
18.柯雅蕾, 罗建沅, 王海英. 支链氨基酸代谢及其与疾病的关系[J]. 中国生物化学与分子生物学报, 2023, 39(1): 24-32. [Ke YL, Luo JY, Wang HY. Branched chain amino acid metabolism and its relationship with diseases[J]. Chinese Journal of Biochemistry and Molecular Biology, 2023, 39(1): 24-32.] DOI: 10.13865/j.cnki.cjbmb.2022.06.1059.
19.姜荣生, 张龙, 管其凡, 等. 短链脂肪酸在2型糖尿病中的作用研究进展[J]. 中国全科医学, 2024, 27(24): 3031-3037. [Jiang RS, Zhang L, Guan QF, et al. Advances in the role of short-chain fatty acids in type 2 diabetes[J]. Chinese General Practice, 2024, 27(24): 3031-3037.] DOI: 10.12114/j.issn.1007-9572.2023.0533.
20.Khan S, Jena G. The role of butyrate, a histone deacetylase inhibitor in diabetes mellitus: experimental evidence for therapeutic intervention[J]. Epigenomics, 2015, 7(4): 669-680. DOI: 10.2217/epi.15.20.
21.Abulizi A, Cardone RL, Stark R, et al. Multi-tissue acceleration of the mitochondrial phosphoenolpyruvate cycle improves whole-body metabolic health[J]. Cell Metab, 2020, 32(5): 751-766.e11. DOI: 10.1016/j.cmet.2020.10.006.
22.张蕾, 李伟伟, 刘树森. 冬虫夏草提取液对肝线粒体氧化磷酸化功能的影响[J]. 中国老年学杂志, 2010, 30(21): 3146-3147. [Zhang L, Li WW, Liu SS. Protective effect of Cordyceps sinensis extract on oxidative damage of liver mitochondria in diabetic mice[J]. Chinese Journal of Gerontology, 2010, 30(21): 3146-3147.] DOI: 10.3969/j.issn.1005-9202.2010.21.049.
23.Dewulf JP, Gerin I, Rider MH, et al. The synthesis of branched-chain fatty acids is limited by enzymatic decarboxylation of ethyl- and methylmalonyl-CoA[J]. Biochem J, 2019, 476(16): 2427-2447. DOI: 10.1042/BCJ20190500.
24.Zhang YK, Qu YY, Lin Y, et al. Enoyl-CoA hydratase-1 regulates mTOR signaling and apoptosis by sensing nutrients[J]. Nat Commun, 2017, 8(1): 464. DOI: 10.1038/s41467-017-00489-5.
25.Li L, Zhang L, Cao Y, et al. NDUFV1 attenuates renal ischemia-reperfusion injury by improving mitochondrial homeostasis[J]. J Cell Mol Med, 2023, 27(10): 1341-1352. DOI: 10.1111/jcmm.17735.
26.颜忠康. 乙酰辅酶A酰基转移酶2介导脂质代谢作用机理的初步探究[D]. 合肥: 安徽大学, 2021. DOI: 10.26917/d.cnki.ganhu.2021.00046.
27.Pan A, Sun XM, Huang FQ,et al. The mitochondrial β-oxidation enzyme HADHA restrains hepatic glucagon response by promoting β-hydroxybutyrate production[J]. Nat Commun, 2022, 13(1): 386. DOI: 10.1038/s41467-022-28044-x.
28.Burke AC, Huff MW. ATP-citrate lyase: genetics, molecular biology and therapeutic target for dyslipidemia[J]. Curr Opin Lipidol, 2017, 28(2): 193-200. DOI: 10.1097/MOL.0000000000000390.