Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 29,2025 No.8 Detail

Research progress on biosynthesis of Panaxnotoginseng saponins

Published on Sep. 01, 2025Total Views: 212 times Total Downloads: 34 times Download Mobile

Author: HAN Jingjie LOU Yuefen

Affiliation: Department of Pharmacy, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China

Keywords: Panaxnotoginseng saponins Biosynthesis Key enzymes Chassis cell Regulatory strategy

DOI: 10.12173/j.issn.2097-4922.202412024

Reference: HAN Jingjie, LOU Yuefen. Research progress on biosynthesis of Panaxnotoginseng saponins[J]. Yaoxue QianYan Zazhi, 2025, 29(8): 1404-1411. DOI: 10.12173/j.issn.2097-4922.202412024 .[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Panaxnotoginseng saponins is widely used in the treatment of clinical cardiac cerebrovascular disease due to its excellent anticoagulant and hemodynamics effects. This review sorted out and analyzed the biosynthetic pathway of Panaxnotoginseng saponins, summarized the role of key enzymes involved expression regulation such as farnesyl pyrophaophate synthase, squalene synthase, squalene epoxidase, dammarenediol-II synthase, oxidosqualene cyclase, cytochrome P450 monooxygenases, and glycosyltransferase. Meanwhile, the research progress in the construction of heterologous synthetic pathways and the regulation of biosynthesiswerealsogeneralized, toprovide reference for the optimization of the biosynthetic method.

Full-text
Please download the PDF version to read the full text: download
References

1.中华人民共和国药典2025年版. 一部[S]. 2025: 13.

2.赵灿, 郭丽娜, 彭玉帅, 等. 三七总皂苷生物合成的关键酶及其调控研究进展[J]. 中草药, 2015, 46(19): 2954-2965. [Zhao  C, Guo LN, Peng YS, et al. Research progress in key enzymes involved in biosynthesis of Panax notoginseng saponins and their regulation[J]. Chinese Traditional and Herbal Drugs, 2015, 46(19): 2954-2965.] DOI: 10.7501/j.issn.0253-2670.2015.19.023.

3.Yan B, Ning Y, Guo J, et al. Network pharmacology analysis and clinical verification of Panax notoginseng saponins in deep venous thrombosis prevention[J]. Biomed Rep, 2024, 22(1): 8. DOI: 10.3892/br.2024.1886.

4.陈玉珍. 探讨三七总皂苷联合抗血小板药物在缺血性脑卒中二级预防中的临床应用价值[D]. 广西白色: 右江民族医学院, 2023. DOI: 10.27908/d.cnki.gymzy.2023.000024.

5.梁晓莲, 刘纤纤, 李文莉, 等. 三七总皂苷药理作用及临床应用研究进展[J]. 湖北农业科学, 2021, 60(6): 15-19. [Liang  XL, Liu XX, Li WL, et al. Research progress in pharmacological effects and clinical applications of Panax notoginseng saponins[J]. Hubei Agricultural Sciences, 2021, 60(6): 15-19.] DOI: 10.14088/j.cnki.issn0439-8114.2021.06.002.

6.高家乐. 三七总皂苷对缺血性中风后急性期神经保护和恢复期修复的机制研究[D]. 北京: 中国中医科学院, 2024. DOI: 10.27658/d.cnki.gzzyy.2024.000053.

7.陈红丽. 三七总皂苷心肌靶向脂质体的药动学、靶向性、心肌保护作用和安全性研究[D]. 南宁: 广西医科大学, 2022. DOI: 10.27038/d.cnki.ggxyu.2022.001096.

8.刘永利, 雷蓉, 王晓蕾, 等. 基于中药质量标志物的人参, 西洋参, 三七及相关中成药质量控制方法研究[J]. 中国药学杂志, 2019, 54(17): 1402-1410. [Liu YL, Lei R, Wang XL, et al. Research on quality control methods of Panax ginseng, Panax quinquefolius, Panax notoginseng and related proprietary chinese medicines based on Q-marker[J]. Chinese Pharmaceutical Journal, 2019, 54(17): 1402-1410.] DOI: 10.11669/cpj.2019.17.007.

9.Li W, Shi H, Wu X. A narrative review of Panax notoginseng: Unique saponins and their pharmacological activities[J]. J Ginseng Res, 2025, 49(2): 118-133. DOI: 10.1016/J.JGR.2024.12.005.

10.王金鹤. 三七皂苷生物合成途径解析与应用[D]. 天津: 天津科技大学, 2019. DOI: 10.27359/ d.cnki.gtqgu.2019.000374.

11.Ghosh, S. Biosynthesis of structurally diverse triterpenes in plants: the role of oxidosqualene cyclases[J]. P Indian Natl Sci Ac, 2016, 82(4): 1189-1210. DOI: 10.16943/ptinsa/2016/48578.

12.马艺沔, 袁丽钗, 张林甦, 等. 2个丹参鲨烯合酶基因的克隆和鉴定[J]. 中草药, 2014, 45(9): 1307-1312. [Ma YM, Yuan  LC, Zhang LS, et al. Cloning and identification of two squalene synthase genes from Salvia miltiorrhiza[J]. Chinese Traditional and Herbal Drugs, 2014, 45(9): 1307-1312.] DOI: 10.7501/j.issn. 0253-2670.2014.09.021.

13.Garaiová M, Zambojová V, Simová Z, et al. Squalene epoxidase as a target for manipulation of squalene levels in the yeast Saccharomyces cerevisiae[J]. FEMS Yeast Res, 2014, 14(2): 310-323. DOI: 10.1111/1567-1364.12107.

14.Wang L, Zhao SJ, Cao HJ, et al. The isolation and characterization of dammarenediol synthase gene from Panax quinquefolius and its heterologous co-expression with cytochrome P450 gene PqD12H in yeast[J]. Funct Integr Genomics, 2014, 14(3): 545-557. DOI: 10.1007/s10142-014-0384-1.

15.Xu Z, Peters RJ, Weirather J, et al. Full-length transcriptome sequences and splice variants obtained by a combination of sequencing platforms applied to different root tissues of Salvia miltiorrhiza and tanshinone biosynthesis[J]. Plant J, 2015, 82(6): 951-961. DOI: 10.1111/tpj.12865.

16.Biazzi E, Carelli M, Tava A, et al. CYP72A67 Catalyzes a key oxidative step in medicago truncatula hemolytic saponin biosynthesis[J]. Mol Plant, 2015, 8(10): 1493-1506. DOI: 10.1016/j.molp.2015.06.003.

17.修乐山, 李非非, 周秘, 等. 刺五加糖基转移酶基因的表达及其对皂苷含量的影响[J]. 基因组学与应用生物学, 2014, 33(1): 128-132. [Xiu LS, Li FF, Zhou M, et al. Expression of glycosyltransferase gene in eleutherococcus senticosus and its influence on saponins content[J]. Genomics and Applied Biology, 2014, 33(1): 128-132.] DOI: 10.13417/j.gab.033.000128.

18.李建华. 乌拉尔甘草黄酮异戊烯基转移酶研究[D]. 北京: 北京协和医学院, 2014. https://cdmd.cnki.com.cn/article/cdmd- 10023-1014345693.htm.

19.Cao X, Yin T, Qian M, et al. Molecular characterization and expression analysis of a gene encoding for farnesyl diphosphate synthase from Euphorbia pekinensis Rupr[J]. Mol Biol Rep, 2012, 39(2): 1487-1492. DOI: 10.1007/s11033-011-0886-z.

20.Zhao H, Tang Q, Mo C, et al. Cloning and characterization of squalene synthase and cycloartenol synthase from Siraitia grosvenorii[J]. Acta Pharm Sin B, 2017, 7(2): 215-222. DOI: 10.1016/j.apsb.2016.06.012.

21.吴耀生. 药用植物三七三萜合成途径功能酶特征与植物三萜合成通路分子进化[D]. 南宁:广西医科大学, 2008. https://cdmd.cnki.com.cn/Article/CDMD-10598-2008106702.htm.

22.周秘, 柴丽花, 修乐山, 等. 刺五加法呢基焦磷酸合酶基因的表达及其与皂苷含量的相关性分析[J]. 河南农业科学, 2013, 42(12): 106-109. [Zhou M, Chai LH, Xiu LS, et al. Expression level of eleutherococcus senticosus farnesyl diphosphate dynthase gene and its correlation with saponin content[J]. Journal of Henan Agricultural Sciences, 2013, 42(12): 106-109.] DOI: 10.3969/j.issn.1004-3268.2013.12.025.

23.Kim YK, Kim YB, Uddin MR, et al. Enhanced triterpene accumulation in panax ginseng hairy roots overexpressing mevalonate-5-pyrophosphate decarboxylase and farnesyl pyrophosphate synthase[J]. ACS Synth Biol, 2014, 3(10): 773-779. DOI: 10.1021/sb400194g.

24.杨林林, 杨利民, 马秀杰, 等. 人参法尼基焦磷酸合成酶基因的表达及其与皂苷含量的关系[J]. 吉林农业大学学报, 2017, 39(6): 695-702, 708. [Yang LL, Yang LM, Ma XJ, et al. Correlation between panax ginseng farnesyl diphosphate synthase gene expression and ginsenoside content[J]. Journal of Jilin Agricultural University, 2017, 39(6): 695-702, 708.] DOI: 10.13327/j.jjlau.2017.3585.

25.Hong WP, Kim OT, Dong YH, et al. Overexpression of farnesyl diphosphate synthase by introducing CaFPS gene in panax ginseng C.A.Mey[J]. Korean J Med Crop Sci, 2013, 21(1): 32-38. DOI: 10.7783/kjmcs.2013.21.1.32.

26.Liu MH, Yang BR, Cheung WF, et al. Transcriptome analysis of leaves, roots and flowers of Panax notoginseng identifies genes involved in ginsenoside and alkaloid biosynthesis[J]. BMC Genomics, 2015, 16(1): 265. DOI: 10.1186/s12864-015-1477-5.

27.Tae-Dong K, Jung-Yeon H, Hye GH, et al. Expression and functional characterization of three squalene synthase genes associated with saponin biosynthesis in Panax ginseng[J]. Plant Cell Physiol, 2011, 52(1): 125-137. DOI: 10.1093/pcp/pcq179.

28.姚萱航, 刘翠晶, 常晶茹, 等. 2种类型膜荚黄芪主要药效成分含量及关键酶基因表达量差异研究[J]. 中草药, 2021, 52(7): 2072-2081. [Yao XH, Liu CJ, Chang JR, et al. Study on content of main active components and expression of key enzyme genes in two types of Astragalus membranaceus[J]. Chinese Traditional and Herbal Drugs, 2021, 52(7): 2072-2081.] DOI: 10.7501/j.issn.0253-2670.2021.07.024.

29.吴耀生, 朱华, 李珅, 等. 三七鲨烯合酶基因在三七根、茎、芦头中的转录表达与三萜皂苷合成[J]. 中国生物化学与分子生物学报, 2007, 23(12): 1000-1005. [Wu YS, Zhu  H, Li K, et al. Transcription expression of squalene synthase gene in root,stem and rootstock of panax notoginseng and synthesis of triterpenoids[J]. Chinese Journal of Biochemistry and Molecular Biology, 2007, 23(12): 1000-1005.] DOI: 10.3969/j.issn.1007-7626.2007.12.006.

30.邢朝斌, 龙月红, 李非非, 等. 刺五加鲨烯合酶基因家族两成员的达及其与皂苷含量的关系[J]. 西南农业学报, 2014, 27(3): 1252-1255. [Xing ZB, Long YH, Li FF, et al. Relationship between expression of two member of squalene synthase gene family from eleutherococcus senticosus and saponins content[J]. Southwest China Journal of Agricultural Sciences, 2014, 27(3): 1252-1255.] DOI: 10.3969/j.issn.1001-4829. 2014.03.065.

31.石磊. 三七皂苷生物合成途径SS、DS基因的克隆和调控研究[D]. 昆明: 昆明理工大学, 2012. https://cdmd.cnki.com.cn/Article/CDMD- 10674-1012430929.htm.

32.孙颖, 赵恒伟, 葛锋, 等. 三七中SS基因超表达载体的构建及其遗传转化[J]. 药学学报, 2013, 48(1): 138-143. [Sun Y, Zhao HW, Ge F, et al. The construction of over-expression vector for Panax notoginseng SS gene and its transformation[J]. Acta Pharmaceutica Sinica, 2013, 48(1): 138-143.] DOI: 10.16438/j.0513-4870.2013.01.008.

33.李珅. 三七三萜皂甙合成途径鲨烯环氧酶基因的克隆及初步表达[D]. 南宁: 广西医科大学, 2006. DOI: 10.7666/d.Y903463.

34.Han JY, In JG, Kwon YS, et al. Regulation of ginsenoside and phytosterol biosynthesis by RNA interferences of squalene epoxidase gene in Panax ginseng[J]. Phytochemistry, 2010, 71(1): 36-46.] DOI: 10.1016/j.phytochem.2009.09.031.

35.牛云云, 朱孝轩, 罗红梅, 等. 三萜皂苷合成生物学元件的初步开发: 三七鲨烯环氧酶编码基因克隆及表达模式分析[J]. 药学学报, 2013, 48(2): 211-218. [Niu YY, Zhu XX, Luo HM, et al. Development of the devices for synthetic biology of triterpene saponins:cloning and expression profiling of squalene epoxide genes in panax notoginseng[J]. Acta Pharmaceutica Sinica, 2013, 48(2): 211-218.] DOI: 10.16438/j.0513-4870.2013.02.014.

36.Sun Y, Li Q, Li Z, et al. Molecular cloning, expression, purification, and functional characterization of palustrin-2CE, an Antimicrobial Peptide of Rana chensinensis[J]. Biosci Biotechnol Biochem, 2012, 76(1): 157-162. DOI: 10.1271/bbb.110672.

37.Han JY, Yong SK, Yang D, et al. Expression and RNA interference-induced silencing of the dammarenediol synthase gene in Panax ginseng[J]. Plant Cell Physiol, 2006, 47(12): 1653-1662. DOI: 10.1093/pcp/pcl032.

38.Kim OT, Bang KH, Kim YC, et al. Upregulation of ginsenoside and gene expression related to triterpene biosynthesis in ginseng hairy root cultures elicited by methyl jasmonate[J]. PCTOC, 2009, 98(1): 25-33. DOI: 10.1007/s11240-009-9535-9.

39.Basyuni M, Oku H, Tsujimoto E, et al. Cloning and functional expression of cycloartenol synthases from mangrove species griff. and (L.) druce[J]. Biosci Biotechnol Biochem, 2014, 71(7): 1788-1792. DOI: 10.1271/bbb.70113.

40.孙颖. 三七中由RNAi介导的CAS基因沉默对三七皂苷合成的影响[D].昆明: 昆明理工大学, 2013. https://www.cnki.com.cn/ Article/CJFDTotal-SWGJ201303015.htm.

41.何沐阳. 干扰人参CS基因的表达对人参三萜成分含量的影响[D]. 长春: 吉林大学, 2013. https://cdmd.cnki.com.cn/ Article/CDMD-10183-1013196094.htm.

42.Nelson DR. Progress in tracing the evolutionary paths of cytochrome P450[J]. Biochim Biophys Acta, 2011, 1814(1): 14-18. DOI: 10.1016/j.bbapap.2010.08.008.

43.Sun C, Li Y, Wu Q, et al. De novo sequencing and analysis of the American ginseng root transcriptome using a GS FLX Titanium platform to discover putative genes involved in ginsenoside biosynthesis[J]. BMC Genomics, 2010, 11(1): 262. DOI: 10.1186/1471-2164-11-262.

44.Luo H, Sun C, Sun Y, et al. Analysis of the transcriptome of Panax notoginseng root uncovers putative triterpene saponin-biosynthetic genes and genetic markers[J]. BMC Genomics, 2011, 12(5): S5. DOI: 10.1186/1471-2164-12-S5-S5.

45.吴鹏, 谷俊涛, 修乐山, 等. 刺五加P450基因时空表达差异及与皂苷含量的相关性分析[J]. 河北农业大学学报, 2014, 37(3): 29-33. [Wu P, Gu JT, Xiu LS, et al. Differential expression of Eleutherococcus senticosus P450 gene in time and space and the correlation analysis between expression level of E.senticosus P450 gene and saponins content[J]. Journal of Hebei Agricultural University, 2014, 37(3): 29-33.] DOI: 10.13320/j.cnki.jauh.2014.0059.

46.Han JY, Kim HJ, Kwon YS, et al. The Cyt P450 enzyme CYP716A47 catalyzes the formation of protopanaxadiol from dammarenediol-II during ginsenoside biosynthesis in panax ginseng[J]. Plant Cell Physiol, 2011, 52(12): 2062-2073. DOI: 10.1093/pcp/pcr150.

47.Chen S, Luo H, Li Y, et al. 454 EST analysis detects genes putatively involved in ginsenoside biosynthesis in Panax ginseng[J]. Plant Cell Rep, 2011, 30(9): 1593-1601. DOI: 10.1007/ s00299-011-1070-6.

48.Liu H, Wang Y, Wang T, et al. De novo assembly and annotation of the Zhe-Maidong [Ophiopogon japonicus (L.f.) Ker-Gawl] transcriptome in different growth stages[J]. Sci Rep, 2017, 7(1): 3616. DOI: 10.1038/s41598-017-03937-w.

49.向丽, 郭溆, 牛云云, 等. 三七PnUGT1基因的全长cDNA 克隆和生物信息学分析[J]. 药学学报, 2012, 47(8): 1085-1091. [Xiang L, Guo S, Niu YY, et al. Full-length cDNA cloning and bioinformatics analysis of PnUGT1 gene in Panax notoginseng[J]. Acta Pharmaceutica Sinica, 2012, 47(8): 1085-1091.] DOI: 10.16438/j.0513-4870.2012.08.003.

50.郭溆. 基于转录组测序的石斛生物碱和人参皂苷生物合成相关基因的发掘、克隆及鉴定[D]. 北京:北京协和医学院, 2013. https://d.wanfangdata.com.cn/thesis/CiBUaGVzaXNOZXdTMjAyNTA2MTMyMDI1MDYxMzE2MTkxNhIIWTIzNDA0ODYaCGRjMzRkeG02.

51.刘啸尘, 范代娣, 杨帆, 等. 人参皂苷化合物生物合成进展 [J]. 中国生物工程杂志, 2021, 41(1): 80-93. [Liu XC, Fan DD, Yang  F, et al. Advances in microbial production of ginsenoside and its derivatives[J]. China Biotechnology, 2021, 41(1): 80-93.] DOI: 10.13523/j.cb.2010014.

52.张亦男, 刘振, 毛相朝. 大肠杆菌角鲨烯合成途径的构建与调控[J]. 工业微生物, 2019, 49(3): 1-6. [Zhang YN, Liu Z, Mao XZ, et al. Construction and regulation of squalene synthesis pathway in Escherichia coil[J]. Industrial Microbiology, 2019, 49(3): 1-6.] DOI: 10.3969/j.issn.1001-6678.2019.03.001.

53.Zhu J, Mao Y, Mo H, et al. Metabolic engineering of Escherichia coli for squalene overproduction[J]. Synth Syst Biotechnol, 2025, 10(4): 1119-1126. DOI: 10.1016/j. synbio.2025.06.003.

54.Zhu FY, Zhong XF, Hu MZ, et al. In vitro reconstitution of mevalonate pathway and targeted engineering of farnesene overproduction in Escherichia coli[J]. Biotechnol Bioeng, 2014, 111(7): 1396-1405. DOI: 10.1002/bit.25198.

55.Song YF, Guan Z, Merkerk RV, et al. Production of squalene in Bacillus subtilis by squalene synthase screening and metabolic engineering[J]. J Agric Food Chem, 2020, 68(15): 4447-4455. DOI: 10.1021/acs.jafc.0c00375.

56.Zhao CC, Gao X, Liu XB, et al. Enhancing biosynthesis of a ginsenoside precursor by self-assembly of two key enzymes in Pichia pastoris[J]. J Agric Food Chem, 2016, 64(17): 3380-3385. DOI: 10.1021/acs.jafc.6b00650.

57.Wu YF, Xu S, Gao X, et al. Enhanced protopanaxadiol production from xylose by engineered Yarrowia lipolytica[J]. Microb Cell Fact, 2019, 18(1): 83. DOI: 10.1186/s12934-019-1136-7.

58.Li DS, Wu YF, Zhang CB, et al. Production of triterpene ginsenoside compound K in the non-conventional Yeast Yarrowia lipolytica[J]. J Agric Food Chem, 2019, 67(9): 2581-2588. DOI: 10.1021/acs.jafc.9b00009.

59.Wei W, Wang PP, Wei Y J, et al. Characterization of panax ginseng UDP-glycosyltransferases catalyzing protopanaxatriol and biosyntheses of bioactive ginsenosides F1 and Rh1 in metabolically engineered Yeasts[J]. Mol Plant, 2015, 8(9): 1412-1424. DOI: 10.1016/j.molp.2015.05.010.

60.Zhuang Y, Yang GY, Chen XH, et al. Biosynthesis of plantderived ginsenoside Rh2 in yeast via repurposing a key promiscuous microbial enzyme[J]. Metab Eng, 2017, 42: 25-32. DOI: 10.1016/j.ymben.2017.04.009.

61.Wang PP, Wei YJ, Fan Y, et al. Production of bioactive ginsenosides Rh2 and Rg3 by metabolically engineered yeasts[J]. Metab Eng, 2015, 29: 97-105. DOI: 10.1016/j.ymben.2015.03.003.

62.Hu ZF, Gu AD, Liang L, et al. Construction and optimization of microbial cell factories for sustainable production of bioactive dammarenediol-II glucosides[J]. Green Chem, 2019, 21(12): 3286-3299. DOI: 10.1039/C8GC04066D.

63.Wang PP, Wei W, Ye W, et al. Synthesizing ginsenoside Rh2 in saccharomyces cerevisiae cell factory at high-efficiency[J]. Cell Discov, 2019, 5: 5. DOI: 10.1038/s41421-018-0075-5.

64.谢泽雄, 陈祥荣, 肖文海, 等. 基因组再造与重排构建细胞工厂[J]. 化工学报, 2019, 70(10): 3712-3721. [Xie ZX, Chen XR, Xiao WH, et al. Cell factory construction accelerated by genome synthesis and rearrangement[J]. CIESC Journal, 2019, 70(10): 3712-3721.] DOI: 10.11949/0438-1157.20190702.

65.王文方, 钟建江. 合成生物学驱动的智能生物制造研究进展[J]. 生命科学, 2019, 31(4): 95-104. [Wang WF, Zhong JJ. Recent advances in smart biomanufacturing driven by synthetic biology[J]. Chinese Bulletin of Life Sciences, 2019, 31(4): 95-104.] DOI: 10.13376/j.cbls/2019055.

66.Zhang GL, Cao Q, Liu JZ, et al. Refactoring β-amyrin synthesis in Saccharomyces cerevisiae[J]. Aiche J, 2015, 61(10): 3172-3179. DOI: 10.1002/aic.14950.

67.Kim JE, Jang IS, Sung BH, et al. Rerouting of NADPH synthetic pathways for increased protopanaxadiol production in Saccharomyces cerevisiae[J]. Sci Rep, 2018, 8(1): 15820. DOI: 10.1038/s41598-018-34210-3.

Popular papers
Last 6 months