With the advancement of perinatal medicine and neonatal surgical techniques, the use of anesthetic agents in neonates and infants has become increasingly widespread. However, the developing nervous system exhibits unique sensitivity to anesthetics, raising significant concerns regarding their safety. Although inhalational anesthetics (such as isoflurane and sevoflurane) and intravenous anesthetics (such as propofol, phenobarbital, and midazolam) are widely applied, animal studies have demonstrated their potential to induce neuronal apoptosis and impair synaptic development, while clinical observations have also suggested associations with neurodevelopmental outcomes. This review summarizes the physiological and pharmacokinetic characteristics of neonates, the neurotoxic mechanisms and clinical safety evidence of commonly used anesthetic agents, with a particular focus on intervention and neuroprotection strategies. Intervention measures include optimization of anesthetic selection, individualized dosing, co-administration of neuroprotective agents, and implementation of precision anesthesia management models. Future research should focus on the development of novel safe anesthetic agents, exploration of epigenetic and neuroprotective mechanisms, and establishment of individualized management models based on multidisciplinary collaboration to ensure the safety and efficacy of anesthesia in neonates and infants.
1.Nakahari H, Wilton NCT, Kojima T. Anesthesia management of neonates and infants requiring intraoperative neurophysiological monitoring: a concise review[J]. Paediatr Anaesth, 2023, 33(7): 526-531. DOI: 10.1111/pan.14670.
2.Smith-Parrish M, Vargas Chaves DP, Taylor K, et al. Analgesia, sedation, and anesthesia for neonates with cardiac disease[J]. Pediatrics, 2022, 150(Suppl 2): e2022056415K. DOI: 10.1542/peds.2022-056415K.
3.Andropoulos DB. Effect of anesthesia on the developing brain: infant and fetus[J]. Fetal Diagn Ther, 2018, 43(1): 1-11. DOI: 10.1159/000475928.
4.Chen DX, Tan ZM, Lin XM. General anesthesia exposure in infancy and childhood: a 10-year bibliometric analysis[J]. J Perianesth Nurs, 2024, 39(5): 772-781. DOI: 10.1016/j.jopan.2023.12.006.
5.Ferschl MB, Jain RR. Fetal and neonatal anesthesia[J]. Clin Perinatol, 2022, 49(4): 821-834. DOI: 10.1016/j.clp.2022.07.001.
6.Wingert TEA, Hekmat D, Ayad I. Regional anesthesia for neonates[J]. Neoreviews, 2023, 24(10): e626-e641. DOI: 10.1542/neo.24-10-e626.
7.Keunen K, Sperna Weiland NH, de Bakker BS, et al. Impact of surgery and anesthesia during early brain development: a perfect storm[J]. Paediatr Anaesth, 2022, 32(6): 697-705. DOI: 10.1111/pan.14433.
8.Moser JJ, Archer DP, Walker AM, et al. Association of sedation and anesthesia on cognitive outcomes in very premature infants: a retrospective observational study[J]. Can J Anaesth, 2023, 70(1): 56-68. DOI: 10.1007/s12630-022-02353-7.
9.Xu T, Kurth CD, Yuan I, et al. An approach to using pharmacokinetics and electroencephalography for propofol anesthesia for surgery in infants[J]. Paediatr Anaesth, 2020, 30(12): 1299-1307. DOI: 10.1111/pan.14021.
10.Trachsel D, Erb TO, Hammer J, et al. Developmental respiratory physiology[J]. Paediatr Anaesth, 2022, 32(2): 108-117. DOI: 10.1111/pan.14362.
11.Lee M, Kim H, Lee C, et al. Effect of intravenous dexmedetomidine and remifentanil on neonatal outcomes after caesarean section under general anaesthesia: a systematic review and meta-analysis[J]. Eur J Anaesthesiol, 2021, 38(10): 1085-1095. DOI: 10.1097/EJA.0000000000001558.
12.Pilkington M, Pentz B, Short K, et al. Enhanced recovery after surgery (ERAS) consensus recommendations for opioid-minimising pharmacological neonatal pain management[J]. BMJ Paediatr Open, 2024, 8(1): e002824.DOI: 10.1136/bmjpo-2024-002824.
13.Lo E, Kalish BT. Neurodevelopmental outcomes after neonatal surgery[J]. Pediatr Surg Int, 2022, 39(1): 22. DOI: 10.1007/s00383-022-05285-x.
14.Yang F, Zhao H, Zhang K, et al. Research progress and treatment strategies for anesthetic neurotoxicity[J]. Brain Res Bull, 2020, 164: 37-44. DOI: 10.1016/j.brainresbull.2020.08.003.
15.Barton K, Yellowman RD, Holm T, et al. Pre-clinical and clinical trials for anesthesia in neonates: gaps and future directions[J]. Pediatr Radiol, 2024, 54(13): 2143-2156. DOI: 10.1007/s00247-024-06066-5.
16.Vutskits L, Davidson A. Clinical investigations on anesthesia-induced developmental neurotoxicity: the knowns, the unknowns and future prospects[J]. Best Pract Res Clin Anaesthesiol, 2023, 37(1): 40-51. DOI: 10.1016/j.bpa.2023.02.004.
17.Kaindl AM, Koppelstaetter A, Nebrich G, et al. Brief alteration of NMDA or GABAA receptor-mediated neurotransmission has long term effects on the developing cerebral cortex[J]. Mol Cell Proteomics, 2008, 7(12): 2293-2310. DOI: 10.1074/mcp.M800030-MCP200.
18.Forcelli PA, Janssen MJ, Vicini S, et al. Neonatal exposure to antiepileptic drugs disrupts striatal synaptic development[J]. Ann Neurol, 2012, 72(3): 363-372. DOI: 10.1002/ana.23600.
19.Duerden EG, Guo T, Dodbiba L, et al. Midazolam dose correlates with abnormal hippocampal growth and neurodevelopmental outcome in preterm infants[J]. Ann Neurol, 2016, 79(4): 548-559. DOI: 10.1002/ana.24601.
20.Tesoro S, Marchesini V, Fratini G, et al. Drugs for anesthesia and analgesia in the preterm infant[J]. Minerva Anestesiol, 2020, 86(7): 742-755. DOI: 10.23736/S0375-9393.20.14073-2.
21.Yang NS, Zhong WJ, Sha HX, et al. mtDNA-cGAS-STING axis-dependent NLRP3 inflammasome activation contributes to postoperative cognitive dysfunction induced by sevoflurane in mice[J]. Int J Biol Sci, 2024, 20(5): 1927-1946. DOI: 10.7150/ijbs.91543.
22.Miao HH, Liu WB, Jiao XH, et al. Neonatal exposure to propofol interferes with the proliferation and differentiation of hippocampal neural stem cells and the neurocognitive function of rats in adulthood via the Akt/p27 signaling pathway[J]. Biomed Environ Sci, 2022, 35(4): 283-295. DOI: 10.3967/bes2022.040.
23.Huang H, Wang N, Lin JT, et al. Repeated ketamine anesthesia during the neonatal period impairs hippocampal neurogenesis and long-term neurocognitive function by inhibiting Mfn2-mediated mitochondrial fusion in neural stem cells[J]. Mol Neurobiol, 2024, 61(8): 5459-5480. DOI: 10.1007/s12035-024-03921-2.
24.Morgan B, Aroke EN, Dungan J. The role of pharmacogenomics in anesthesia pharmacology[J]. Annu Rev Nurs Res, 2017, 35(1): 241-256. DOI: 10.1891/0739-6686.35.241.
25.Landau R, Smiley R. Pharmacogenetics in obstetric anesthesia[J]. Best Pract Res Clin Anaesthesiol, 2017, 31(1): 23-34. DOI: 10.1016/j.bpa.2017.01.004.
26.Ma LH, Yan J, Jiao XH, et al. The role of epigenetic modifications in neurotoxicity induced by neonatal general anesthesia[J]. Front Mol Neurosci, 2022, 15: 877263. DOI: 10.3389/fnmol.2022. 877263.
27.Creeley C, Dikranian K, Dissen G, et al. Propofol-induced apoptosis of neurones and oligodendrocytes in fetal and neonatal rhesus macaque brain[J]. Br J Anaesth, 2013, 110 Suppl 1(Suppl 1): i29-i38. DOI: 10.1093/bja/aet173.
28.Chidambaran V, Sadhasivam S, Diepstraten J, et al. Evaluation of propofol anesthesia in morbidly obese children and adolescents[J]. BMC Anesthesiol, 2013, 13: 8. DOI: 10.1186/1471-2253-13-8.
29.Redaelli S, Magliocca A, Malhotra R, et al. Nitric oxide: clinical applications in critically ill patients[J]. Nitric Oxide, 2022, 121: 20-33. DOI: 10.1016/j.niox.2022.01.007.
30.Smith HAB, Besunder JB, Betters KA, et al. 2022 society of critical care medicine clinical practice guidelines on prevention and management of pain, agitation, neuromuscular blockade, and delirium in critically III pediatric patients with consideration of the ICU environment and early mobility[J]. Pediatr Crit Care Med, 2022, 23(2): e74-e110. DOI: 10.1097/PCC.0000000000002873.
31.李畅, 赵平. 新生儿缺氧缺血性脑病中异氟烷及七氟烷的保护作用及相关机制[J]. 国际儿科学杂志, 2020, 47(9): 648-651. [Li C, Zhao P. Neuroprotective properties and the mechanisms of isoflurane and sevoflurane in neonatal hypoxic-ischemic encephalopathy[J]. International Journal of Pediatrics, 2020, 47(9): 648-651.] DOI: 10.3760/cma.j.issn.1673-4408.2020.09.012.
32.梁宁, 陈萍, 舒秋霞. 丙泊酚与硫喷妥钠在产妇全麻诱导中对新生儿影响的Meta分析[J]. 临床和实验医学杂志, 2020, 19(7): 781-784. [Liang N, Chen P, Shu QX. Influence of propofol and thiopentone on neonate in induction of anaesthesia of parturient: a Meta-analysis[J]. Journal of Clinical and Experimental Medicine, 2020, 19(7): 781-784] DOI: 10.3969/j.issn.1671-4695.2020.07.033.
33.林常森, 王承海, 赵鲁夕, 等. 艾司氯胺酮用于剖宫产术中镇静对新生儿的影响[J]. 中国卫生标准管理, 2024, 15(4): 131-135. [Lin CS, Wang CH, Zhao LX, et al. Effects of esketamine used for sedation during caesarean section on neonates[J]. China Health Standard Management, 2024, 15(4): 131-135.] DOI: 10.3969/j.issn.1674-9316.2024.04.031.
34.Bertolizio G, Disma N, Engelhardt T. After nectarine: how should we provide anesthesia for neonates?[J]. Curr Opin Anaesthesiol, 2022, 35(3): 337-342. DOI: 10.1097/ACO.0000000000001126.
35.Larsen LG, Hansen TG. Epidural anesthesia and analgesia in neonates and infants: protocol for a scoping review[J]. Acta Anaesthesiol Scand, 2025, 69(5): e70029. DOI: 10.1111/aas.70029.
36.温琳娜, 王晓, 左云霞. 新生儿术后镇痛管理进展[J]. 实用医院临床杂志, 2023, 20(2): 146-150. [Wen LN, Wang X, Zuo YX. Progress in postoperative analgesia management of newborns[J]. Practical Journal of Clinical Medicine, 2023, 20(2): 146-150.] DOI: 10.3969/j.issn.1672-6170.2023.02.036.
37.张弦, 晏馥霞, 陈凌宇, 等. 新生儿术后镇痛的临床进展 [J]. 中华全科医学, 2023, 21(2): 292-297. [Zhang X, Yan FX, Chen LY, et al. Clinical progress of postoperative analgesia in neonates[J]. Chinese Journal of General Practice, 2023, 21(2): 292-297.] DOI: 10.16766/j.cnki.issn.1674-4152.002867.
38.郭红利, 郭亮. 瑞芬太尼全身麻醉对剖宫产产妇血流动力学及新生儿结局的影响[J]. 临床医学研究与实践, 2023, 8(19): 108-111. [Guo HL, Guo L. Effects of remifentanil general anesthesia on hemodynamics of cesarean section parturients and neonatal outcome[J]. Clinical Research and Practice, 2023, 8(19): 108-111.] DOI: 10.19347/j.cnki.2096-1413.202319027.
39.Brown K, Aun C, Stocks J, et al. A comparison of the respiratory effects of sevoflurane and halothane in infants and young children[J]. Anesthesiology, 1998, 89(1): 86-92. DOI: 10.1097/00000542-199807000-00015.
40.Efune PN, Longanecker JM, Alex G, et al. Use of dexmedetomidine and opioids as the primary anesthetic in infants and young children: a retrospective cohort study[J]. Paediatr Anaesth, 2020, 30(9): 1013-1019. DOI: 10.1111/pan.13945.
41.谢磊, 何欣瑶, 包静婷, 等. 右美托咪定联合应用在剖宫产术后镇痛的研究进展[J]. 浙江临床医学, 2025, 27(3): 464-466, 469. [Xie L, He XY, Bao JT, et al. Research progress on the combined use of dexmedetomidine for postoperative analgesia following cesarean section[J]. Zhejiang Clinical Medical Journal, 2025, 27(3): 464-466, 469.] https://med.wanfangdata.com.cn/Paper/Detail?id=PeriodicalPaper_zjlcyx202503051&dbid=WF_QK.
42.Yuan I, Landis WP, Topjian AA, et al. Prevalence of isoelectric electroencephalography events in infants and young children undergoing general anesthesia[J]. Anesth Analg, 2020, 130(2): 462-471. DOI: 10.1213/ANE.0000000000004221.
43.Brown RE Jr. Safety considerations of anesthetic drugs in children[J]. Expert Opin Drug Saf, 2017, 16(4): 445-454. DOI: 10.1080/14740338.2017.1295037.
44.Weiss M, Machotta A. Quality and safe anesthesia for all children: that is their right![J]. Anaesthesist, 2022, 71(4): 255-263. DOI: 10.1007/s00101-022-01111-0.
45.McDonald L, Barenklau S, Hollabaugh B. Prevention and management of hypoxemia during anesthesia induction in the neonate and small infant[J]. AANA J, 2025, 93(1): 63-70. DOI: 10.70278/AANAJ/.0000001006.
46.Gerber C, Bishop DG, Dyer RA, et al. African surgical outcomes study (ASOS) investigators. Method of anesthesia and perioperative risk factors, maternal anesthesia complications, and neonatal mortality following cesarean delivery in africa: a substudy of a 7-day prospective observational cohort study[J]. Anesth Analg, 2024, 138(6): 1275-1284. DOI: 10.1213/ANE.0000000000006750.