Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles New Online Detail

Research progress on the mechanism of physiological and pathological cardiac hypertrophy and the intervention of traditional Chinese medicine

Published on Nov. 06, 2025Total Views: 23 times Total Downloads: 6 times Download Mobile

Author: ZHOU Shiguo 1 HE Wenjie 2 CHEN Pingping 2 LU Fang 2

Affiliation: 1. Harbin Guolang Chinese Medicine Clinic, Harbin 150040, China 2. Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China

Keywords: Cardiac hypertrophy Molecular regulation mechanism Chinese medicine intervention

  • Abstract
  • Full-text
  • References
Abstract

The heart is an important organ of the body responsible for supplying blood, oxygen and nutrients throughout the body. When subjected to external stimuli, the heart produces different adaptive responses. By reviewing previous studies, this article reviews the regulatory mechanisms involving molecules such as peroxisome proliferator-activated receptor γ-coactivator -1α (PGC-1α), estrogen receptor α (ERα), microRNA (miRNA), long non-coding RNA (lncRNA), mammalian target of rapamycin (mTOR), CCAAT/ enhancer binding protein β (C/EBPβ), insulin-like growth factor-I (IGF-I), and nitric oxide (NO), and finds that the adaptive molecular regulatory mechanisms induced by exercise in the heart are different from those induced by pathological stimuli. Traditional Chinese medicine or traditional Chinese medicine compound can exert therapeutic effects on pathological cardiac hypertrophy by regulating PGC-1α and ERα expression, affecting miRNA function, intervening in mTOR pathway and NO levels, etc. This article aims to summarize the relevant molecular mechanisms and research progress on traditional Chinese medicine intervention, providing theoretical basis and research ideas for the clinical prevention and treatment of cardiac hypertrophy.

Full-text
Please download the PDF version to read the full text: download
References

1.刘冠楠, 陈钢. 运动性与病理性心脏肥大[J]. 沈阳体育学院学报, 2014, 33(2): 90-96. [Liu GN, Chen G. Exercise-induced and pathological cardiac hypertrophy[J]. Journal of Shenyang Sport University, 2014, 33(2): 90-96.] DOI: 10.3969/j.issn.1004-0560.2014.02.018.

2.Sassi Y, Avramopoulos P, Ramanujam D, et al. Cardiac myocyte miR-29 promotes pathological remodeling of the heart by activating Wnt signaling[J]. Nat Commun, 2017, 8(1): 1614. DOI: 10.1038/s41467-017-01737-4.

3.Liu X, Xiao J, Zhu H, et al. miR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling[J]. Cell Metabolism, 2015, 21(4): 584. DOI: 10.1016/j.cmet.2015.02.014.

4.Rooij EV, Sutherland LB, Liu N, et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure[J]. Proc Natl Acad Sci U S A, 2006, 103(48): 18255-18260. DOI: 10.1073/pnas.0608791103.

5.徐同毅. miR-214-5p调控HSF1在运动预处理减轻病理性心肌肥厚中的作用机制研究[D]. 上海: 第二军医大学, 2014.

6.贾明学, 张国海, 李艳, 等. 微小RNA 30c增加有氧运动训练小鼠心室顺应性的研究[J]. 体育科学, 2013, 33(9): 70-76. [Jia MX, Zhang GH, Li Y, et al. MicroRNA 30c involved in the improvement of ventricular compliance promoted by aerobic exercise training in mice[J]. China Sport Science, 2013, 33(9): 70-76.] DOI: 10.3969/j.issn.1000-677X.2013.09.010.

7.李振华. miR-199在心肌肥厚中的功能研究[D]. 北京: 中国人民解放军军事医学科学院, 2016. https://cdmd.cnki.com.cn/Article/CDMD-90106-1016211547.htm.

8.Viereck J, Thum T. Circulating noncoding RNAs as biomarkers of cardiovascular disease and injury[J]. Circ Res, 2017, 20, 120(2): 381-399. DOI: 10.1161/CIRCRESAHA.116.308434.

9.刘澜涛. H19在心肌肥厚中的功能研究[D]. 北京: 中国人民解放军军事医学科学院, 2016. https://cdmd.cnki.com.cn/Article/CDMD-90106-1016211539.htm.

10.陈智鸿. Exosomal miRNA在心力衰竭患者血浆中的表达及临床意义研究[D]. 福州: 福建医科大学, 2017. DOI: 10.7666/d.D01305323.

11.Whitehead N, Gill JF, Brink M, et al. Moderate modulation of cardiac PGC-1α expression partially affects age-associated transcriptional remodeling of the heart[J]. Front Physiol, 2018, 9: 242. DOI: 10.3389/fphys.2018.00242.

12.Riehle C, Wende AR, Zhu Y, et al. Insulin receptor substrates are essential for the bioenergetic and hypertrophic response of the heart to exercise training[J]. Mol Cell Biol, 2014, 34(18): 3450. DOI: 10.1128/MCB.00426-14.

13.Vega RB, Horton JL, Kelly DP. Maintaining ancient organelles: mitochondrial biogenesis and maturation[J]. Circ Res, 2015, 116(11): 1820. DOI: 10.1161/CIRCRESAHA.116.305420.

14.Ferreira R, Nogueira-Ferreira R, Trindade F, et al. Sugar or fat: the metabolic choice of the trained heart[J]. Metabolism, 2018, 87: 98-104. DOI: 10.1016/j.metabol.2018.07.004.

15.姚春霞. GATA转录因子对心肌能量代谢及细胞增殖的调控机制研究[D]. 郑州: 郑州大学, 2012. DOI: 10.7666/d.y2103058.

16.Chen Y, Yu S, Zhang N, et al. Atorvastatin prevents angiotensin II induced myocardial hypertrophy in vitro via CCAAT/enhancer-binding protein β[J]. Biochem Biophys Res Commun, 2017, 486(2): 423-430. DOI: 10.1016/j.bbrc.2017.03.057.

17.Rogers MA, Verena K, Gemma M, et al. CITED4 gene silencing in colorectal cancer cells modulates adherens/tight junction gene expression and reduces cell proliferation[J]. J Cancer Res Clin Oncol, 2016, 142(1): 225-237. DOI: 10.1007/s00432-015-2011-5.

18.Bezzerides VJ, Platt C, Lerchenmüller C, et al. CITED4 induces physiologic hypertrophy and promotes functional recovery after ischemic injury[J]. JCI Insight, 2016, 1(9): e85904. DOI: 10.1172/jci.insight.85904.

19.Ogasawara R, Fujita S, Hornberger TA, et al. The role of mTOR signalling in the regulation of skeletal muscle mass in a rodent model of resistance exercise[J]. Sci Rep, 2016, 6: 31142. DOI: 10.1038/srep31142.

20.曹云山. Rheb1在出生后小鼠心脏生长及功能维持中的作用研究[D]. 南京: 南京医科大学, 2014. https://cdmd.cnki.com.cn/Article/CDMD-10312-1015519133.htm.

21.李奕, 曾凡星,吴迎, 等. 不同强度运动诱导Akt/mTOR信号对心肌肥大的作用研究[J]. 北京体育大学学报, 2013, 36(6): 49-54. [Li Y, Zeng FX, Wu Y, et al. Research on regulation of cardiac hypertrophy by the Akt/mTOR signaling at different exercise intensity[J]. Journal of Beijing Sport University, 2013, 36(6): 49-54.] DOI: 10.19582/j.cnki.11-3785/g8.2013.06.010.

22.Hatazawa Y, Qian K, Gong DW, et al. PGC-1α regulates alanine metabolism in muscle cells[J]. PloS One, 2018, 13(1): e0190904.DOI: 10.1371/journal.pone.0190904.

23.王思慧, 熊亮. mTORC1信号通路在心血管疾病中对心肌细胞自噬、凋亡的作用机制[J]. 赣南医学院学报, 2023, 43(9): 936-942. [Wang SH, Xiong L. Mechanism of mTORC1 signaling pathway on autophagy and apoptosis of cardiomyocytes in cardiovascular diseases[J]. Journal of Gannan Medical University, 2023, 43(9): 936-942.] DOI: 10.3969/j.issn.1001-5779.2023.09.010.

24.Kararigas G, Nguyen BT, Jarry H. Estrogen modulates cardiac growth through an estrogen receptor α-dependent mechanism in healthy ovariectomized mice[J]. Mol Cell Endocrinol, 2014, 382(2): 909-914. DOI: 10.1016/j.mce.2013.11.011.

25.丁延峰, 何瑞荣. 胰岛素样生长因子I对心脏的作用[J]. 生理科学进展, 2000, 31(3): 234-236. [Ding YF, He RR. Actions of insulin-like growth factor-1 on heart[J]. Progress in Physiological Sciences, 2000, 31(3): 234-236.] https://www.cnki.com.cn/Article/CJFDTOTAL-SLKZ200003009.htm.

26.Donohue TJ, Dworkin LD, Lango MN, et al. Induction of myocardial insulin-like growth factor-I gene expression in left ventricular hypertrophy[J]. Circulation, 1994, 89(2): 799-809. DOI: 10.1161/01.cir.89.2.799.

27.Rainer PP, Kass DA. Old dog, new tricks: novel cardiac targets and stress regulation by protein kinase G[J]. Cardiovas Res, 2016, 111(2): 154-162. DOI: 10.1093/cvr/cvw107.

28.Calvert JW, Condit ME, Aragón JP, et al. Exercise protects against myocardial ischemia-reperfusion injury via stimulation of β(3)-adrenergic receptors and increased nitric oxide signaling: role of nitrite and nitrosothiols[J]. Circ Res, 2011, 108(12), 1448-1458. DOI: 10.1161/CIRCRESAHA.111.241117.

29.de Waard MC, Van HR, Soullié T, et al. Beneficial effects of exercise training after myocardial infarction require full eNOS expression[J]. J Mol Cell Cardiol, 2010, 48(6): 1041. DOI: 10.1016/j.yjmcc.2010.02.005.

30.Yang L, Jia Z, Yang L, et al. Exercise protects against chronic β-adrenergic remodeling of the heart by activation of endothelial nitric oxide synthase[J]. PloS One, 2014, 9(5): e96892. DOI: 10.1371/journal.pone.0096892.

31.Vettor R, Valerio A, Ragni M, et al. Exercise training boosts eNOS-dependent mitochondrial biogenesis in mouse heart: role in adaptation of glucose metabolism[J]. Am J Physiol Endocrinol Metab, 2014, 306(5): 519-528. DOI: 10.1152/ajpendo.00617.2013.

32.van Deel DE, Octavia Y, Boer DM, et al. Normal and high eNOS levels are detrimental in both mild and severe cardiac pressure-overload[J]. J Mol Cell Cardiol, 2015, 88: 145-154. DOI: 10.1016/j.yjmcc.2015.10.001.

33.Chengfei X ,Ziling L, Jiangwei X. Ferroptosis: a double-edged sword in gastrointestinal disease[J]. Int J Mol Sci, 2021, 22(22): 12403. DOI: 10.3390/ijms222212403.

34.Zhang M, Guan X, Dong Z, et al. Targeting Zfp36 to combat cardiac hypertrophy: Insights into ferroptosis pathways[J]. Clin Transl Med, 2025, 15(3): e70247. DOI: 10.1002/ctm2.70247.

35.李根芳. BMP10通过调控系统铁稳态维持心脏功能[D]. 上海: 上海海洋大学, 2021. https://cdmd.cnki.com.cn/Article/CDMD-10264-1021760176.htm.

36.Zhao BB ,Wang J, Zhang LL, et al. SGLT2i continuously prevents cardiac hypertrophy by reducing ferroptosis via AMPK up-regulation[J]. Mol Cell Biochem, 2025, 480(8): 4849-4864. DOI: 10.1007/s11010-025-05294-z.

37.孙照阳, 王艳, 李岩岩, 等. 黄芪皂苷Ⅱ通过AMPK/PGC-1α/Nrf2通路抑制高糖所致施万细胞铁死亡的作用机制 [J]. 福建医科大学学报, 2025, 59(1): 9-17. [Sun ZY, Wang Y, Li YY, et al. Mechanism of action of astragaloside ⅱ in inhibition of high glucose-induced ferroptosis in schwann cells via AMPK/PGC-1α/Nrf2 pathway[J]. Journal of Fujian Medical University, 2025, 59(1): 9-17.] DOI: 10.3969/j.issn.1672-4194.2025.01.004.

38.王婷, 邹岩, 李海燕, 等. 有氧运动抑制心脏Hmox-1/GPX4介导的铁死亡缓解糖尿病小鼠心室重构[J]. 温州医科大学学报, 2023, 53(5): 370-378. [Wang T, ZouY, Li HY, et al. Aerobic exercise inhibited cardiac Hmox-1/GPX4 mediating ferroptosis to alleviate cardiac remodeling in diabetic cardiomyopathy[J]. Journal of Wenzhou Medical University, 2023, 53(5): 370-378.] DOI: 10.3969/j.issn.2095-9400.2023.05.005.

39.Liu C, Yi X, Yan J, et al. Paeonol improves angiotensin II-induced cardiac hypertrophy by suppressing ferroptosis[J]. Heliyon, 2023, 9(9): e19149-e19149. DOI: 10.1016/j.heliyon.2023.e19149.

40.赵凯. 外泌体携带HSP90α通过调控mTOR-GPX4信号轴抑制血管肉瘤细胞自噬依赖性铁死亡机制初探[D]. 新疆石河子: 石河子大学, 2023. DOI: 10.27332/d.cnki.gshzu.2023.001380.

41.苏波, 李浪. 线粒体自噬在心血管疾病的作用研究进展 [J]. 广西医科大学学报, 2020, 37(10): 1901-1905. [Su B, Li L. Research progress on the role of mitochondrial autophagy in cardiovascular diseases[J]. Journal of Guangxi Medical University, 2020, 37(10): 1901-1905.] DOI: 10.16190/j.cnki.45-1211/r.2020.10.026.

42.Anbo G, Mengjie W, Xing T, et al. NDP52 SUMOylation contributes to low-dose X-rays-induced cardiac hypertrophy through PINK1/Parkin-mediated mitophagy via MUL1/SUMO2 signalling[J]. J Cell Physiol, 2023, 239(1): 79-96. DOI: 10.1002/jcp.31145.

43.唐伟, 郑美群, 王晓琳, 等. 真武汤含药血清对心肌肥大细胞凋亡和线粒体自噬的影响[J]. 中国实验方剂学杂志, 2025, 31(3): 11-21. [Tang W, Zheng MQ, Wang XL, et al. Effect of serum containing zhenwutang on apoptosis of myocardial mast cells and mitochondrial autophagy[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2025, 31(3): 11-21.] DOI: 10.13422/j.cnki.syfjx.20241239.

44.禹笑阳, 王振涛, 强祎彤, 等. 抗纤益心方调控SIRT1介导的线粒体自噬抑制心肌细胞肥大的机制[J]. 时珍国医国药, 2024, 35(9): 2108-2111. [Yu XY, Wang ZT, Qiang  YT, et al. Mechanism of kangxian yixin decoction regulating SIRT1 mediated mitochondrial autophagy and inhibiting cardiomyocyte hypertrophy[J]. Lishizhen Medicine and Materia Medica Research, 2024, 35(9): 2108-2111.] DOI: 10.3969/j.issn.1008-0805.2024.09.13.

45.杜佳, 张辉, 苏式兵. MicroRNA调节肿瘤细胞凋亡及中药的影响[J]. 世界科学技术-中医药现代化, 2011, 13(4): 606-610. [Du J, Zhang H, Su SB. MicroRNA involving in tumor cell apoptosis and effect of traditional chinese medicine[J]. World Science and Technology-Modernization of Traditional Chinese Medicine, 2011, 13(4): 606-610.] DOI: 10.3969/j.issn.1674-3849.2011.04.004.

46.邓伟民, 魏秋实, 谭新, 等. 补肾健脾化瘀方对去势大鼠股骨骨髓ERRα和PGC-1α mRNA表达的影响[J]. 中国骨质疏松杂志, 2014, 20(10): 1143-1147, 1158. [Deng WM, Wei QS, Tan X, et al. Effect of kidney-tonifying, spleen-strengthening, and blood stasis removing recipe on the expression ERRα and PGC-1α mRNA in the bone marrow of the femurs in ovariectomized rat model[J]. Chinese Journal of Osteoporosis, 2014, 20(10): 1143-1147, 1158.] DOI: 10.3969/j.issn.1006-7108.2014.10.001.

47.覃华, 张琰, 王四旺, 等. 葛根素预防压力过载性心脏肥大的保护作用及机制[J]. 西北药学杂志, 2016, 31(5): 478-482. [Qin  H, Zhang Y, Wang SW, et al. Protective effect and mechanism of puerarin prevent cardiac hypertrophy from pressure overload[J]. Northwest Pharmaceutical Journal, 2016, 31(5): 478-482.] DOI: 10.3969/j.issn.1004-2407.2016.05.012.

48.甘我挺, 孙丽, 韩欣, 等. 中药对内皮型一氧化氮合酶转录的调控作用[J]. 中国实验方剂学杂志, 2012, 18(15): 323-327. [Gan WT, Sun L, Han X, et al. Effect of traditional chinese herbs on endothelial nitric oxide synthase transcriptional regulation[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2012, 18(15): 323-327.] DOI: 10.3969/j.issn.1005-9903.2012.15.090.

49.康锦花. 益气温阳活血利水法治疗慢性心力衰竭的临床分析及作用机制探讨[D]. 广州: 广州中医药大学, 2022. DOI: 10.27044/d.cnki.ggzzu.2022.000069.

50.Pillai VB, Samant S, Sundaresan NR, et al. Honokiol blocks and reverses cardiac hypertrophy in mice by activating mitochondrial Sirt3[J]. Nat Commun, 2015, 6: 6656. DOI: 10.1038/ncomms7656.

51.Huang L, Zhang K, Guo Y, et al. Honokiol protects against doxorubicin cardiotoxicity via improving mitochondrial function in mouse hearts[J]. Sci Rep, 2017, 7(1): 11989. DOI: 10.1038/s41598-017-12095-y.

52.王伟立. 黄芩素通过激活Nrf2/HO-1抑制心肌铁死亡改善小鼠心脏损伤机制研究[D]. 辽宁锦州: 锦州医科大学, 2024. DOI: 10.27812/d.cnki.glnyx.2024.000839.

53.王懿, 张艳, 礼海. 益气活血方干预PGC-1α调控心衰心肌细胞能量代谢重构的作用机制[J]. 中国实验方剂学杂志, 2015, 21(6): 169-173. [Wang Y, Zhang Y, Li H. Mechanism of action research on yiqi huoxue decoction intervene PGC-1α control heart failure myocardial cell energy metabolismrefactoring[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2015, 21(6): 169-173.] DOI: 10.13422/j.cnki.syfjx.2015060169.

54.Gao RR, Wu XD, Jiang HM, et al. Traditional Chinese medicine Qiliqiangxin attenuates phenylephrine-induced cardiac hypertrophy via upregulating PPARγ and PGC-1α.[J]. Ann Transl Med, 2018, 6(8): 153. DOI: 10.21037/atm.2018.04.14.

Popular papers
Last 6 months