Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 29,2025 No.1 Detail

Study on the active ingredient content and molecular mechanism of Notopterygii rhizoma et radixin in the treatment of Alzheimer's disease based on liquid chromatography-mass spectrometry and network pharmacology

Published on Jan. 26, 2025Total Views: 147 times Total Downloads: 39 times Download Mobile

Author: GAO Huan XU Zihua HU Bei CHEN Ying ZHAO Qingchun

Affiliation: Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110016, China

Keywords: Notopterygii rhizoma et radix Network pharmacology Mechanism High performance liquid chromatographytandem mass spectrometry Content determination Alzheimer's disease Active ingredient

DOI: 10.12173/j.issn.2097-4922.202408081

Reference: GAO Huan, XU Zihua, HU Bei, CHEN Ying, ZHAO Qingchun. Study on the active ingredient content and molecular mechanism of Notopterygii rhizoma et radixin in the treatment of Alzheimer's disease based on liquid chromatography-mass spectrometry and network pharmacology[J]. Yaoxue QianYan Zazhi, 2025, 29(1): 2-13.DOI: 10.12173/j.issn.2097-4922.202408081.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Objective  To study the active ingredients and potential molecular mechanism of Notopterygii rhizoma et radix in treating Alzheimer's disease (AD), establish an high performance liquid chromatographytandem mass spectrometry (HPLC-MS/MS) method which can simultaneously determine the content of five components in Notopterygii rhizoma et radix, and provide a basis for experimental research on its pharmacological substance basis and molecular mechanism.

Methods  The active ingredients and targets of Notopterygii rhizoma et radix were obtained from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, and AD related targets were predicted from GeneCards, Online Mendelian Inheritance in Man (OMIM), and National Center for Biotechnology Information (NCBI) databases. The Cytoscape software was used to construct a drug-ingredient-target-disease visualization network, the STRING database online platform was used to construct a protein-protein interaction network, and GO function and KEGG pathway enrichment analysis were performed. The main active ingredients and key targets were molecularly linked using Maestro software to validate the network pharmacology results. HPLC-MS/MS method was used to simultaneously determine the content of five components, namely, nodakenin, bergaptin, diosmetin, notopterol, and isoimperatorin. XTerra MS C18 column (100 mm × 2.1 mm, 3.5 µm) was used. The methanol-water was used as the mobile phase with the gradient elution, and the flow rate was 0.3 mL/min. The column temperature was 30 ℃, and the sample amount was 5 µL. The electric spray ion source and multi reaction monitoring positive ion mode were adopted.

Results  A total of 13 active ingredients in Notopterygii rhizoma et radix and 36 anti AD targets were obtained from network pharmacology. Gene enrichment analysis showed that there were 165 GO functional items and 89 pathways (P<0.05). The molecular docking results indicated that the main active ingredients of Notopterygii rhizoma et radix had the best binding activity with the key target retinoic acid X receptor. There was a good linear relationship between the peak area and the concentrations of nodakenin, bergaptin, diosmetin, notopterol, and isoimperatorin in the ranges of 69.74-8 472.85, 8.51-1  033.89, 0.35-37.00, 15.42-1 873.27, and 58.85-7 150.49 ng/mL, respectively (r ﹥0.990 0).

Conclusion  The potential mechanism of multi-component, multi-target, and multi pathway anti-AD effects of Notopterygii rhizoma et radix has been preliminarily explored. The established HPLC-MS/MS method is easy to operate, reliable, highly specific, and reproducible, and can be used for quality control of Notopterygii rhizoma et radix. This study will provide a basis for the research on the pharmacological substance basis, molecular mechanism, and quality control of related preparations of Notopterygii rhizoma et radix against AD.

Full-text
Please download the PDF version to read the full text: download
References

1.蒋舜媛, 周毅, 孙辉, 等. 羌活属药用植物基源考证[C]. 生态文明建设中的植物学: 现在与未来-中国植物学会第十五届会员代表大会暨八十周年学术年会论文集-第4分会场: 资源植物, 2013: 90.

2.中国药典2020版. 二部[S]. 2020: 190-191.

3.马丽梅, 杨军丽. 羌活药材的化学成分和药理活性研究进展 [J]. 中草药, 2021, 52(19): 6111-6120. [Ma  LM, Yang JL. Research progress on chemical constituents and pharmacological activities of Notopterygii Rhizoma et Radix[J]. Chinese Traditional and Herbal Drugs, 2021, 52(19): 6111-6120.] DOI: 10.7501/j.issn.0253-2670. 2021.19.034.

4.Blunder M, Liu X, Kunert O, et al. Polyacetylenes from Radix et Rhizoma Notopterygii incisi with an inhibitory effect on nitric oxide production in vitro[J]. Planta Med, 2014, 80(5): 415-418. DOI: 10.1055/s-0034-1368196.

5.刘卫根, 周国英, 徐文华, 等. 羌活种子挥发油的化学成分及抗氧化活性[J]. 光谱实验室, 2012, 29(6): 3364-3373. [Liu WG, Zhou GY, Xu WH, et al. Chemical compositions and antioxidant activity of essential oil from seeds of Notopterygium incisum Ting ex H.T.Chang[J]. Chinese Journal of Spectroscopy Laboratory, 2012, 29(6): 3364-3373. ] DOI: 10.3969/j.issn.1004-8138. 2012.06.022.

6.郭晏华, 沙明, 孟宪生, 等. 中药羌活的抗病毒研究 [J]. 时珍国医国药, 2005, 16(3): 198-199. [Guo YH, Sha M, Meng XS, et al. The anti-viral studies of Notopterygium incisum[J]. Lishizhen Medicine and Materia Medica Research, 2005, 16(3): 198-199.] DOI: 10.3969/j.issn. 1008-0805.2005.03.005.

7.Wu SB, Pang F, Wen Y, et al. Antiproliferative and apoptotic activities of linear furocoumarins from Notopterygium incisum on cancer cell lines[J]. Planta Med, 2010, 76(1): 82-85. DOI: 10.1055/s-0029-1185971.

8.周毅, 白筱璐, 孙洪兵, 等. 家种羌活的品质评价研究[J]. 中药药理与临床, 2017, 33(2): 95-99. [Zhou  Y, Bai  XL, Sun HB, et al. Study on quality evaluation of cultivated Notopterygii Rhizoma et Radix[J]. Pharmacology and Clinics of Chinese Materia Medica, 2017, 33(2): 95-99.] DOI: 10.13412/j.cnki.zyyl.2017.02.026.

9.Jiang XW, Liu WW, Wu YT, et al. Notopterygium incisum extract (NRE) rescues cognitive deficits in APP/PS1 Alzhneimer's disease mice by attenuating amyloid-beta, tau, and neuroinflammation pathology[J]. J Ethnopharmacol, 2020, 249: 112433. DOI: 10.1016/j.jep.2019.112433.

10.Skalicka-Woźniak K, Orhan IE, Cordell GA, et al. Implication of coumarins towards central nervous system disorders[J]. Pharmacol Res, 2016, 103: 188-203. DOI: 10.1016/j.phrs.2015.11.023.

11.张明发, 沈雅琴. 羌活药理学研究[J]. 中国执业药师, 2008, 5(5): 28-30. [Zhang MF, Shen YQ. Pharmacological research of Rhizomza Seu Radix Notopterygii[J]. China Licensed Pharmacist, 2008, 5(5): 28-30.] DOI: 10.3969/j.issn.1672-5433.2008.05.011.

12.李智勇, 张兴水, 王军练, 等. 羌活的研究进展[J]. 陕西中医学院学报, 2003, 26(6): 56-59. [Li ZY, Zhang XS, Wang JL, et al. Progress in researches on Notopterygium root[J]. Journal of Shaanxi College of Traditional Chinese Medicine, 2003, 26(6): 56-59.] DOI: 10.3969/j.issn.1002-168X.2003.06.034.

13.李良昌, 朴红梅, 秦向征, 等. 羌活提取物对哮喘小鼠Thl/Th2 细胞平衡的影响及其对 p38 信号通路的作用 [J]. 解剖学报, 2013, 44(6): 819-823. [Li LC, Piao HM, Qin XZ, et al. Effects of extract of notopterygium on Thl/Th2 cells balance and p38 signaling pathway in the asthma mouse mode[J]. Acta Anatomica Sinica, 2013, 44(6): 819-823.] DOI: 10.3969/j.issn.0529-1356.2013.06.016.

14.巩子汉, 段永强, 付晓艳, 等. 羌活的药理作用研究 [J]. 亚太传统医药, 2019, 15(5): 192-194. [Gong ZH, Duan  YQ, Fu XY, et al. Analysis of pharmacological effects of Notopterygium incisum[J]. Asia-Pacific Traditional Medicine, 2019, 15(5): 192-194.] DOI: 10.11954/ytctyy.201905061.

15.Jiang XW, Lu HY, Li JD, et al. A natural BACE1 and GSK3β dual inhibitor Notopterol effectively ameliorates the cognitive deficits in APP/PS1 Alzheimer's mice by attenuating amyloid-β and tau pathology[J]. Clin Transl Med , 2020, 10(3): e50. DOI: 10.1002/ctm2.50.

16.杨力龙, 苏华珍, 卢新丽, 等. 网络药理学在中药及其复方中应用的研究进展[J]. 大众科技, 2021, 23(259): 55-57. [Yang LL, Su HZ, Lu XL, et al. Research progress on application of network pharmacology in traditional Chinese medicine and its compound prescription[J]. Popular Science & Technology, 2021, 23(259): 55-57.] DOI: 10.3969/j.issn.1008-1151.2021.03.015.

17.李晓玲, 贾鑫航, 董方昕, 等. 基于网络药理学和分子对接探讨黄连治疗脓毒症的作用机制[J]. 特产研究, 2022, 44(6): 112-117, 148. [Li XL, Jia XH, Dong FX, et al. Study on the mechanism of action of Coptidis on the sepsis based on the network pharmacology and molecular docking[J]. Special Wild Economic Animal and Plant Research, 2022, 44(6): 112-117, 148.] DOI: 10.16720/j.cnki.tcyj.2022.020.

18.向柳. 基于数据挖掘探析防治阿尔茨海默病的潜在中药 [D]. 成都: 成都中医药大学, 2023. DOI: 10.26988/d.cnki.gcdzu.2023.000085.

19.Fang JS, Liu C, Wang Q, et al. In silico polypharmacology of natural products[J]. Brief Bioinform, 2018, 19(6): 1153-1171. DOI: 10.2174/1871530319666181217123357.

20.陈元堃, 曾奥, 罗振辉, 等. β-谷甾醇药理作用研究进展[J]. 广东药科大学学报, 2021, 37(1): 148-153. [Chen YK, Zeng A, Luo Zh, et al. Advances on pharmacology of β-sitosterol[J]. Journal of Guangdong Pharmaceutical University, 2021, 37(1): 148-153.] DOI: 10.16809/j/cnki.2096-3653.2020040801.

21.Alappat L, Valerio M. Effect of vitamin D and β-sitosterol on immune function of macrophages[J]. Int Immunopharmacol, 2010, 10(11): 1390-1396. DOI: 10.1016/j.intimp.2010.08.003.

22.Koo HJ, Park HJ, Byeon HE, et al. Chinese yam extracts containing β-sitosterol and ethyl linoleate protect against atherosclerosis in apolipoprotein E‐deficient mice and inhibit muscular expression of VCAM-1 in vitro[J]. J Food Sci, 2014, 79(4): H719-H729. DOI: 10.1111/1750-3841.12401.

23.Shi C, Luo X, Wang J, et al. Incorporation of β-sitosterol into the membrane prevents tumor necrosis factor-α-induced nuclear factor-κB activation and gonadotropin-releasing hormone decline[J]. Steroids, 2015, 96: 1-6. DOI: 10.1016/j.steroids.2014.12.014.

24.Bin SMS, Ameen SS. Beta-sitosterol: a promising but orphan nutraceutical to fight against cancer[J]. Nutr Cancer, 2015, 67(8): 1214-1220. DOI: 10.1080/01635581.2015.1087042.

25.Liao PC, Lai MH, Hsu KP, et al. Identification of β-sitosterol as in vitro anti-inflammatory constituent in Moringa oleifera[J]. J Agric Food Chem, 2018, 66(41): 10748-10759. DOI: 10.1021/acs.jafc.8b04555.

26.Shi C, Wu F. Incorporation of β-sitosterol into mitochondrial membrane enhances mitochondrial function by promoting inner mitochondrial membrane fluidity[J]. J Bioenerg Biomembr, 2013, 45(3): 301-305. DOI: 10.1007/s 10863-012-9495-3.

27.Gogoi D, Pal A, Chattopadhyay P, et al. First report of plant-derived β-sitosterol with antithrombotic, in vivo anticoagulant, and thrombus-preventing activities in a mouse model[J]. J Nat Prod, 2018, 81(11): 2521-2530. DOI: 10.1021/acs.jnatprod.8b00574.

28.宋祯彦, 陈易璇, 余婧萍, 等. 钩藤散活性成分治疗阿尔茨海默病作用机制的网络药理学分析[J]. 中草药, 2018, 49(24): 5854-5864. [Song ZY, Chen  YX, Yu JP, et al. Network pharmacological approach to investigate mechanism of active ingredients in Gouteng powder for Alzheimer's disease[J]. Chinese Traditional and Herbal Drugs, 2018, 49(24): 5854-5864.] DOI: 10.7501/j.issn.0253-2670.2018.24.019.

29.Chen X, Zhang YJ, Pei JX, et al. Phellopterin alleviates atopic dermatitis-like inflammation and suppresses IL-4-induced STAT3 activation in keratinocytes[J]. IntImmunopharmacol, 2022, 112: 109270. DOI: 10.1016/j.intimp.2022.109270.

30.Dong HK, Do YK, Young CK, et al. Nodakenin, a coumarin compound, ameliorates scopolamine-induced memory disruption in mice[J]. Life Sci, 2007, 80: 1944-1950. DOI: 10.1016/j.lfs.2007.02.023.

31.Rivas JDL, Fontanillo C. Protein-protein interactions essentials: key concepts to building and analyzing interactome networks[J]. PLoS Comput Biol, 2010, 6(6): e1000807. DOI: 10.1371/journal.pcbi.1000807.

32.Guan PP, Wang P. Integrated communications between cyclooxygenase-2 and Alzheimer's disease[J]. FASEB J, 2019, 33(1): 13-33. DOI: 10.1096/fj.201800355RRRR.

33.Hellmann J, Tang YN, Zhang MJ, et al. Atf3 negatively regulates Ptgs2/Cox2 expression during acute inflammation[J]. Prostaglandins Other Lipid Mediat, 2015, 116-117: 49-56. DOI: 10.1016/j.prostaglandins.2015.01.001.

34.Yermakova AV, Banion MK. Downregulation of neuronal cyclooxygenase-2 expression in end stage Alzheimer's disease[J]. Neurobiol Aging, 2001, 22: 823-836. DOI: 10.1016/s0197-4580(01)00303-7.

35.Pirskanen M, Hiltunen M, Mannermaa A, et al. Estrogen receptor beta gene variants are associated with increased risk of Alzheimer's disease in women[J]. Eur J Hum Genet, 2005, 13(9): 1000-1006. DOI: 10.1038/sj.ejhg.5201447.

36.Summer BE, Fink G. Estrogen increases the density of 5-hydroxytryptamine (2A) receptors in cerebral cortex and nucleus accumbens in the female rat[J]. J Steroid Biochem Mol Biol, 1995, 54(1-2): 15-20. DOI: 10.1016/0960-0760(95)00075-b.

37.Thomas F, Moshe S, Angela C, et al. DNA methylation of the serotonin transporter gene (SLC6A4) is associated with brain function involved in processing emotional stimuli[J]. J Psychiatry Neurosci, 2015, 40(5): 296-305. DOI: 10.1503/jpn.140180.

38.Satoshi O, Shigeru M, Manabu F, et al. The potential of SLC6A4 gene methylation analysis for the diagnosis and treatment of major depression[J]. J Psychiatr Res, 2014, 53: 47-53. DOI: 10.1016/j.jpsychires.2014.02.002.

39.Marzieh A, Saeed T, Elina K, et al. Caspase-3: structure, function, and biotechnological aspects[J]. Biotechnol Appl Biochem, 2021, 69(4): 1633-1645. DOI: 10.1002/bab.2233.

40.Sulistio YA, Heese K. The ubiquitin-proteasome system and molecular chaperone deregulation in Alzheimer's disease[J]. Mol Neurobiol, 2016, 53(2): 905-931. DOI: 10.1007/s12035-014-9063-4.

41.Wilkinson D, Windfeld K, Colding-Jørgensen E. Safety and efficacy of idalopirdine, a 5-HT6 receptor antagonist, in patients with moderate Alzheimer's disease (LADDER): a randomised, double-blind, placebo-controlled phase 2 trial[J]. Lancet Neurol, 2014, 13(11): 1092-1099. DOI: 10.1016/S1474-4422(14)70198-X.

42.Claeysen S, Bockaert J, Giannoni P. Serotonin: a new hope in Alzheimer's disease?[J]. ACS Chem Neurosci, 2015, 6(7): 940-943. DOI: 10.1021/acschemneuro.5b00135.

43.Hansen RA, Gartlehner G, Webb AP, et al. Efficacy and safety of donepezil, galantamine, and rivastigmine for the treatment of Alzheimer's disease: a systematic review and meta-analysis[J]. Clin Interv Aging, 2008, 3(2): 211-225. https://pubmed.ncbi.nlm.nih.gov/18686744/.

44.Missiaen L, Robberecht W, Bosch LVD, et al. Abnormal intracellular Ca2+ homeostasis and disease[J]. Cell Calcium, 2000, 28(1): 1-21. DOI: 10.1054/ceca.2000.0131.

Popular papers
Last 6 months