Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 29,2025 No.5 Detail

Research progress on the hepatoprotective mechanism of Berberis and its active components

Published on May. 31, 2025Total Views: 223 times Total Downloads: 19 times Download Mobile

Author: YANG Guibin GUI Mingan GUO Hao ZHUOMA Dongzhi YUAN Ruiying

Affiliation: School of Medicine of Xizang University, Lhasa 850000, China

Keywords: Berberis Active ingredient Liver disease Hepatoprotective effect

DOI: 10.12173/j.issn.2097-4922.202503095

Reference: YANG Guibin, GUI Mingan, GUO Hao, ZHUO-MA Dongzhi, YUAN Ruiying. Research progress on the hepatoprotective mechanism of Berberis and its active components[J]. Yaoxue QianYan Zazhi, 2025, 29(5): 832-848. DOI: 10.12173/j.issn.2097-4922.202503095.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Berberis has good hepatoprotective effects. Its active components can exert these effects by inhibiting inflammatory responses, regulating oxidative stress levels in liver tissue, and modulating cell apoptosis and autophagy. Berberis shows certain therapeutic potential for various liver diseases, including alcoholic liver injury, chemical reagent-induced liver injury, ischemia-reperfusion-induced liver injury, non-alcoholic fatty liver disease, autoimmune hepatitis, liver cirrhosis, and liver cancer. We summary the research progress on the protection and mechanism of Berberis and its active monomers against various types of liver diseases, aiming to provide a reference for the development of drugs for liver diseases.

Full-text
Please download the PDF version to read the full text: download
References

1.国家药典委员会. 中国药典[M]. 北京: 中国医药科技出版社, 2020: 14.

2.清·赵学敏. 本草纲目拾遗. 卷五草部[M]. 北京: 人民卫生出版社, 1983.

3.Golubev D, Platonova E, Zemskaya N, et al. Berberis vulgaris L. extract supplementation exerts regulatory effects on the lifespan and healthspan of Drosophila through its antioxidant activity depending on the sex[J]. Biogerontology, 2024, 25(3): 507-528. DOI: 10.1007/s10522-023-10083-6.

4.Mokhber DN, Saeidnia S, Gohari AR, et al. Phytochemistry and pharmacology of berberis species[J]. Pharmacogn Rev, 2014, 8(15): 8-15. DOI: 10.4103/0973-7847.125517.

5.Potdar D, Hirwani RR, Dhulap S. Phyto-chemical and pharmacological applications of Berberis aristata[J]. Fitoterapia, 2012, 83(5): 817-830. DOI: 10.1016/j.fitote.2012.04.012

6.Szalak R, Matysek M, Koval M, et al. Magnoflorine from Berberis vulgaris roots-impact on hippocampal neurons in mice after short-term Exposure[J]. Int J Mol Sci, 2023, 24(8): 7166. DOI: 10.3390/ijms24087166.

7.Adamus A, Peer K, Ali I, et al. Berberis orthobotrys-a promising herbal anti-tumorigenic candidate for the treatment of pediatric alveolar rhabdomyosarcoma[J]. J Ethnopharmacol, 2019, 229: 262-271. DOI: 10.1016/j.jep.2018.10.002.

8.Kuo CL, Chi CW, Liu TY. The anti-inflammatory potential of berberine in vitro and in vivo[J]. Cancer Lett, 2004, 203(2): 127-137. DOI: 10.1016/j.canlet.2003.09.002.

9.Fatehi M, Saleh TM, Fatehi-Hassanabad Z, et al. A pharmacological study on Berberis vulgaris fruit extract[J]. J Ethnopharmacol, 2005, 102(1): 46-52. DOI: 10.1016/j.jep.2005.05.019.

10.Belwal T, Bisht A, Devkota HP, et al. Phytopharmacology and clinical updates of berberis species against diabetes and other metabolic diseases[J]. Front Pharmacol, 2020, 11: 41. DOI: 10.3389/fphar.2020.00041.

11.Biswas R, Mukherjee PK, Chaudhary SK. Tyrosinase inhibition kinetic studies of standardized extract of Berberis aristata[J]. Nat Prod Res, 2016, 30(12): 1451-1454. DOI: 10.1080/14786419.2015.1062376.

12.Ai X, Yu P, Luo L, et al. Berberis dictyophylla F. inhibits angiogenesis and apoptosis of diabetic retinopathy via suppressing HIF-1α/VEGF/DLL-4/Notch-1 pathway[J]. J Ethnopharmacol, 2022, 296: 115453. DOI: 10.1016/j.jep.2022.115453.

13.Yang L, Zhang Z, Hu X, et al. Phenolic contents, organic acids, and the antioxidant and bio activity of wild medicinal berberis plants-as sustainable sources of functional food[J]. Molecules, 2022, 27(8): 2497. DOI: 10.3390/molecules27082497.

14.Pervez S, Saeed M, Khan H, et al. Antinociceptive and anti-inflammatory like effects of Berberis baluchistanica[J]. Curr Mol Pharmacol, 2021, 14(5): 746-752. DOI: 10.2174/1874467213666201204153045.

15.Diab S, Fidanzi C, Léger DY, et al. Berberis libanotica extract targets NF-κB/COX-2, PI3K/Akt and mitochondrial/caspase signalling to induce human erythroleukemia cell apoptosis[J]. Int J Oncol, 2015, 47(1): 220-230. DOI: 10.3892/ijo.2015.3012

16.范东旭, 包海鹰. 小檗属植物中生物碱成分及药理活性研究概述[J]. 人参研究, 2012, 24(2): 55-62. [Fan DX, Bao HY. Summarization of researches on alkaloids and pharmacological activities of Berberis plants[J]. Renshen Yanjiu, 2012, 24(2): 55-62.] DOI: 10.3969/j.issn.1671-1521.2012.02.017.

17.刘晔玮, 王勤, 马志刚, 等. 甘肃产三颗针植物中生物碱的测定及分布状态的研究[J]. 分析测试学报, 2004, 23(3): 54-57, 60. [Liu YW, Wang Q, Ma ZG, et al. Studies on the distribution of alkaloids in Berberis plants from Gansu[J]. Journal of Instrumental Analysis, 2004, 23(3): 54-57, 60.] DOI: 10.3969/j.issn.1004-4957.2004.03.014.

18.王笑频, 尹璐, 庞博. 中华本草[M]. 北京: 人民卫生出版社: 2023: 279.

19.全国中草药汇编编导组. 全国中草药汇编[M]. 北京: 人民卫生出版社, 1975: 97.

20.陕西省革命委员会卫生局商业局. 陕西中草药[M]. 北京: 科学出版社, 1971: 92.

21.帝玛尔·旦增彭措, 毛继祖, 译.晶珠本草[M]. 上海: 上海科学技术出版社, 1986: 108.

22.Sobhani Z, Akaberi M, Amiri MS, et al. Medicinal species of the genus berberis: a review of their traditional and ethnomedicinal uses, phytochemistry and pharmacology[J]. Adv Exp Med Biol, 2021, 1308: 547-577. DOI: 10.1007/978-3-030-64872-5_27.

23.Bhardwaj D, Kaushik N. Phytochemical and pharmacological studies in genus Berberis[J]. Phytochem Rev, 2012, 11: 523-542. DOI: org/10.1007/s11101-013-9272-x.

24.Marchelak A, Gieleta M, Krasocka W, et al. Berberis aristata DC. (Indian barberry): Current insight into botanical, phytochemical, and pharmacological aspects, pharmacokinetics, safety of use and modern therapeutic applications[J]. Fitoterapia, 2025, 183: 106539. DOI: 10.1016/j.fitote.2025.106539.

25.Wang FS, Fan JG, Zhang Z, et al. The global burden of liver disease: The major impact of China[J]. Hepatology, 2014, 60(6): 2099-2108. DOI: 10.1002/hep.27406.

26.廖翠平, 赵鹿, 董世奇, 等. 小檗属植物抗糖尿病及糖尿病并发症的研究进展[J]. 药物评价研究, 2019, 42(5): 1027-1032. [Liao CP, Zhao L, Dong SQ, et al. Research advances on anti-diabetes and complications of Berberis plants[J]. Drug Evaluation Research, 2019, 42(5): 1027-1032.] DOI: 10.7501/j.issn.1674-6376.2019.05.042.

27.Arayne MS, Sultana N, Bahadur SS. The berberis story: Berberis vulgaris in therapeutics[J]. Pak J Pharm Sci, 2007, 20(1): 83-92. https://pubmed.ncbi.nlm.nih.gov/17337435/.

28.Del Gaudio MP, Kraus SI, Melzer TM, Bustos PS, Ortega MG. Antinociceptive effect and identification of berberine alkaloid in Berberis ruscifolia extracts[J]. J Ethnopharmacol, 2023, 305: 116066. DOI: 10.1016/j.jep.2022.116066.

29.曾宇骄, 彭家艳, 罗玉婷, 等. 小檗皮总生物碱的提取纯化、含量测定和急性毒性实验研究[J]. 中药与临床, 2024, 15(5): 5-8. [Zeng YJ, Peng JY, Luo YT, et al. Extraction, purification, content determination and acute toxicity of total alkaloids from Berberis dictyophylla Cortex[J]. Pharmacy and Clinics of Chinese Materia Medica, 2024, 15(5): 5-8.] DOI: 10.3969/j.issn.1674-926X.2024.05.002.

30.孙婷婷, 郭凡, 伊尔夏提·地里夏提, 等. 新疆伊犁河谷沙棘和小檗总黄酮质量分数的比较研究[J]. 现代盐化工, 2022, 49(4): 51-52, 96. [Sun TT, Guo F, Yierxiati Dilixiati, et al. Research on comparison of total flavonoids mass fraction of Seabuckthorn and Berberis in Yili Valley, Xinjiang[J]. Modern Salt and Chemical Industry, 2022, 49(4): 51-52, 96.] DOI: 10.19465/j.cnki.2095-9710.2022.04.021.

31.Ali Redha A, Siddiqui SA, Ibrahim SA. Advanced extraction techniques for Berberis species phytochemicals: a review[J]. IInt J Food Sci Technol, 2021, 56(11): 5485-5496. DOI: 10.1111/ijfs.15315.

32.Kim KH, Choi SU, Lee KR. Bioactivity-guided isolation of cytotoxic triterpenoids from the trunk of Berberis koreana[J]. Bioorg Med Chem Lett, 2010, 20(6): 1944-1947. DOI: 10.1016/j.bmcl.2010.01.156.

33.Chen, X., Yang, S., Yang, H. et al. Extraction of flavonoids and phenolics from Berberis kongboensis fruit. Biomass Conv. Bioref. 14, 16831-16841 (2024). https://doi.org/10.1007/s13399-023-03906-6.

34.胡明华, 胡昌奇, 侯喜林. 安徽小檗生物碱成分的研究[J]. 天然产物研究与开发, 2008, 20(4): 633-635. [Hu MH, Hu  CQ, Hou  XL. Studies on the alkaloids of berberis anhweiensis ahrendt[J]. Natural Product Research and Development, 2008, 20(4): 633-635.] DOI: 10.3969/j.issn.1001-6880.2008.04.016.

35.徐海波, 张晓维, 孙超, 等. 甘肃小檗枝、叶化学成分的分离与鉴定[J]. 中国药房, 2012, 23(47): 4493-4495. [Xu HB, Zhang XW, Sun C, et al. Isolation and identification of chemical constituents from branches and leaves of berberis kansuensis[J]. China Pharmacy, 2012, 23(47): 4493-4495.] https://www.cnki.com.cn/Article/CJFDTotal-ZGYA201247038.htm.

36.Hostalkova A, Marikova J, Opletal L, et al. Isoquinoline alkaloids from berberis vulgaris as potential lead compounds for the treatment of alzheimer's disease[J]. J Nat Prod, 2019, 82(2): 239-248. DOI: 10.1021/acs.jnatprod.8b00592.

37.Singh A, Bajpai V, Srivastava M, et al. Rapid screening and distribution of bioactive compounds in different parts of Berberis petiolaris using direct analysis in real time mass spectrometry[J]. J Pharm Anal, 2015, 5: 332-335. DOI: 10.1016/j.jpha.2015.05.002.

38.Hazrat A, Shahab U, Sajid J. Chemistry and biological activities of berberis lycium royle[J]. J Biol Act Prod Nat, 2015, 5(5): 295-312. DOI: 10.1080/22311866.2015.1073627.

39.Suau R, Rico R, López-Romero JM, et al. Isoquinoline alkaloids from Berberis vulgaris subsp. australis[J]. Phytochemistry, 1998, 49(8): 2545-2549. DOI: 10.1016/S0031-9422(98)00121-6.

40.Karimov A, Vinogradova VI, Shakirov R. Berberis alkaloids. XXII. Interbrinine and intebrimine-new alkaloids from Berberis integerrima[J]. Chem Nat Compd, 1993, 29(1): 57-60. DOI: 10.4103/1735-5362.223797.

41.Fajardo V, Araya M, Cuadra P, et al. Pronuciferine N-oxide, a proaporphine N-oxide alkaloid from Berberis coletioides[J]. J Nat Prod, 2009, 72(7): 1355-1356. DOI: 10.1021/np9000976.

42.Imanshahidi M, Hosseinzadeh H. Pharmacological and therapeutic effects of Berberis vulgaris and its active constituent, berberine[J]. Phytother Res, 2008, 22(8): 999-1012. DOI: 10.1002/ptr.2399.

43.Habtemariam S. Berberine and inflammatory bowel disease: a concise review[J]. Pharmacol res, 2016, 113: 592-599. DOI: 10.1016/j.phrs.2016.09.041.

44.Yusupov MM, Karimov A, Levkovich MG, et al. Berberis alkaloids. XVII. Investigation of the alkaloids of Berberis heteropoda[J]. Chem Nat Compd, 1993, 29: 43-48. https://link.springer.com/article/10.1007/BF00631012.

45.Istatkova R, Philipov S, Tuleva P, et al. Alkaloids from Mongolian species Berberis sibirica Pall[J]. Comptes Rendus L'Academie Bulg, 2007, 60(11): 1177-1182. DOI: 10.3390/ijms22094487.

46.Yusupov MM, Karimov A, Levkovich MG, et al. Berberis alkaloids. XVII. investigation of the alkaloids of Berberis heteropoda[J]. Chem Nat Compd+, 1993, 29: 43-48. DOI: 10.1007/BF00631012.

47.Gundogdu M. Determination of antioxidant capacities and biochemical compounds of Berberis vulgaris L. fruits[J]. Adv Environ Biol, 2013: 344-348. https://www.aensiweb.com/old/aeb/2013/344-348.pdf.

48.Nazir N , Rahman A , Uddin F, et al. Quantitative ethnomedicinal status and phytochemical analysis of Berberis lyceum royle[J]. Agronomy, 2021, 11(1): 130. DOI: 10.3390/agronomy11010130.

49.Çakır Ö, Karabulut A. Comparison of two wild-grown Berberis varieties based on biochemical characterization[J]. Food Process Pres, 2020, 44: 14844-14854. DOI: 10.1111/jfpp.14844.

50.赵晨旭, 杨利民, 韩佳宏, 等. 大叶小檗的研究进展[J]. 人参研究, 2022, 34(3): 54-59. [Zhao CX, Yang LM, Han JH, et al. Research progress of the Berberis amurensis rupr[J]. Renshen Yanjiu, 2022, 34(3), 54-59.] DOI: 10.19403/j.cnki.1671-1521. 2022.03.014.

51.Mustafa K, Mohamed H, Shah AM, et al. In vitro anticancer potential of Berberis lycium royle extracts against human hepatocarcinoma (HepG2) cells[J]. Biomed Res Int, 2020, 2020: 8256809. DOI: 10.1155/2020/8256809.

52.Singh A, Bajpai V, Kumar S, et al. Distribution and discrimination study of bioactive compounds from Berberis species using HPLC-ESI-QTOF-MS/MS with principle component analysis[J]. Nat Prod Commun, 2016, 11(12): 1807-1812. https://pubmed.ncbi.nlm.nih.gov/30508339/.

53.Li Q, Song F, Zhu M et al. Hyperoside: a review of pharmacological effects[J]. F1000Research, 2022, 11: 635. DOI: 10.12688/f1000research.122341.1.

54.Sharifi A, Niakousari M, Mortazavi SA, et al. High-pressure CO2 extraction of bioactive compounds of barberry fruit (Berberis vulgaris): process optimization and compounds characterization[J]. J Food Meas Charact, 2019, 13(2): 1139-1146. DOI: 10.1007/s11694-018-00029-9.

55.SaiedS S, Begum S. Phytochemical studies of Berberis vulgaris[J]. Chem Nat Compd, 2004, 40(2): 137-140. DOI: 10.1023/B:CONC.0000033929.60336.bb.

56.Kim KH, Choi SU, Lee KR. Cytotoxic triterpenoids from Berberis koreana[J]. Planta Medica, 2012, 78(1): 86-89. DOI: 10.1055/s-0031-1280127.

57.Cao XF, Wang JS, Wang PR, et al. Triterpenes from the stem bark of Mitragyna diversifolia and their cytotoxic activity[J]. Chin J Nat Med. 2014, 12(8): 628-631. DOI: 10.1016/S1875-5364(14)60096-0.

58.李玥, 杨松. 酒精性肝病研究进展[J]. 中国肝脏病杂志(电子版), 2022, 14(3): 1-4. [Li Y, Yang S. Progress on alcoholic liver disease[J]. Chinese Journal of Liver Diseases (Electronic Version), 2022, 14(3): 1-4.] DOI: 10.3969/j.issn.1674-7380.2022.03.001.

59.Liu X, Chen G, Du G, et al. Berbamine ameliorates ethanol-induced liver injury by inhibition of hepatic inflammation in mice[J]. Chin J Nat Med, 2020, 18(3): 186-195. DOI: 10.1016/S1875-5364(20)30020-0.

60.Zeng H, Guo X, Zhou F, et al. Quercetin alleviates ethanol-induced liver steatosis associated with improvement of lipophagy[J]. Food Chem Toxicol, 2019, 125: 21-28. DOI: 10.1016/j.fct.2018.12.028.

61.曹杨. (+)-儿茶素与EGCG对酒精诱导肝脂代谢紊乱的干预研究[D]. 江苏扬州: 扬州大学, 2020. https://cdmd.cnki.com.cn/Article/CDMD-11117-1020050925.htm.

62.Ueno T, Komatsu M. Autophagy in the liver: functions in health and disease[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(3): 170-184. DOI: 10.1038/nrgastro.2016.185.

63.Parzych KR, Klionsky DJ. An overview of autophagy: morphology, mechanism, and regulation[J]. Antioxid Redox Signal, 2014, 20(3): 460-473. DOI: 10.1089/ars.2013.5371.

64.Liu L, Xie P, Li W, et al. Augmenter of liver regeneration protects against ethanol-induced acute liver injury by promoting autophagy[J]. Am J Pathol, 2019, 189(3): 552-567. DOI: 10.1016/j.ajpath.2018.11.006.

65.Lin GS, Zhao MM, Fu QC, et al. Palmatine attenuates hepatocyte injury by promoting autophagy via the AMPK/mTOR pathway after alcoholic liver disease[J]. Drug Dev Res, 2022, 83(7): 1613-1622. DOI: 10.1002/ddr.21981.

66.Gan D, Ma L, Jiang C, et al. Medium optimization and potential hepatoprotective effect of mycelial polysaccharides from Pholiota dinghuensis Bi against carbon tetrachloride-induced acute liver injury in mice[J]. Food Chem Toxicol, 2012, 50(8): 2681-2688. DOI: 10.1016/j.fct.2012.05.003.

67.买买提·司马义, 阿依努尔·吐鲁洪, 热孜宛古丽·约麦尔,等. 红果小檗果乙醇提取物对四氯化碳致急性肝损伤小鼠的保护作用[J]. 新疆医科大学学报, 2019, 42(8): 1049-1053. [Maimaiti Simayi, Ayinuer Tuluhong, Reziwanguli Yuemaier. Protective effect of ethanol extract of berberberry on mice with carbon tetrachloride-induced acute liver injury[J]. Journal of Xinjiang Medical University, 2019, 42(8): 1049-1053] DOI: 10.3969/j.issn.1009-5551.2019.08.019.

68.Nada SA, Omara EA, Abdel-Salam OM, et al. Mushroom insoluble polysaccharides prevent carbon tetrachloride-induced hepatotoxicity in rat[J]. Food Chem Toxicol, 2010, 48(11): 3184-3188. DOI: 10.1016/j.fct.2010.08.019.

69.Zhang BJ, Xu D, Guo Y, et al. Protection by and anti-oxidant mechanism of berberine against rat liver fibrosis induced by multiple hepatotoxic factors[J]. Clin Exp Pharmacol Physiol, 2008, 35(3): 303-309. DOI: 10.1111/j.1440-1681.2007.04819.x.

70.万星, 陶柏楠, 邵文翠, 等. 儿茶素干预硬脂酰辅酶A去饱和酶-1表达抗小鼠肝纤维化损伤[J]. 中国药理学通报, 2023, 39(2): 305-310. [Wan X, Tao BN, Shao WC, et al. Catechin interferes with SCD1 expression and prevents liver fibrosis in mice[J]. Chinese Pharmacological Bulletin, 2023, 39(2): 305-310.] DOI: 10.12360/CPB202203055.

71.向锁玉, 张丽超, 胡云逸, 等. 小檗碱通过调节脂质代谢发挥抗肝纤维化作用[J]. 热带医学杂志, 2022, 22(4): 457-463. [Xiang SY, Zhang LC, Hu YY, et al. Berberine exerts anti-liver fibrosis effect by regulating lipid metabolism[J]. Journal of Tropical Medicine, 2022, 22(4): 457-463.] DOI: 10.3969/j.issn.1672-3619.2022.04.003.

72.黄利, 宁楠, 张媛, 等. 刀豆蛋白A、D-氨基半乳糖、四氯化碳致小鼠急性肝损伤病理比较[J]. 中药药理与临床, 2022, 38(3): 168-172. [Huang L, Ning N, Zhang Y, et al. Pathological comparison of acute liver injury induced by concanavalin A, D-aminogalactose and carbon tetrachloride in mice[J]. Pharmacology and Clinical Medicine of Traditional Chinese Medicine, 2022, 38(3): 168-172.] https://www.cnki.com.cn/Article/CJFDTOTAL-ZYYL202203031.htm.

73.徐杰, 高雅, 吉燕萍, 等. 岩白菜素对D-GalN诱导大鼠急性肝损伤影响[J]. 中国公共卫生, 2022, 38(1): 70-74. [Xu  J, Gao  Y, Ji YP. Effect of cachsin on acute liver injury induced by D-GalN in rats[J]. Chinese Journal of Public Health, 2022, 38(1): 70-74.] DOI: 10.11847/zgggws1131528.

74.买买提·司马义, 吾斯曼·艾海提, 热孜宛古丽·约麦尔. 红果小檗对小鼠急性肝损伤的保护作用[J]. 海峡药学, 2021, 33(12): 13-16. [Maimaiti Ismaili, Usman Ahaiti, Reziwangul Yomer. Protective effect of barberry on acute liver injury in mice[J]. Strait Pharmaceutical Journal, 2021, 33(12): 13-16.] DOI: 10.3969/j.issn.1006-3765.2021.12.004.

75.Lee W, Kim J, Kang J, et al. Palmatine attenuates d-galactosamine/lipopolysaccharide-induced fulminant hepatic failure in mice[J]. Food Chem Toxicol, 2010, 48(1): 222-228. DOI: 10.1016/j.fct.2009.10.004.

76.徐泽月, 郭宏丽, 胡雅慧, 等. 异烟肼引起的肝毒性及其影响因素的研究进展[J]. 中国新药杂志, 2022, 31(22): 2251-2256. [Xu ZY, Guo HL, Hu YH, et al. Research progress on isoniazid-induced hepatotoxicity and its influencing factors[J]. Chinese Journal of New Drugs, 2022, 31(22): 2251-2256.] DOI: 10.3969/j.issn.1003-3734.2022.22.012.

77.唐玲, 金梅, 向萍, 等. 小檗碱对异烟肼致肝损伤模型小鼠的保护作用及其机制研究[J]. 中国药房, 2011, 22(21): 1940-1942. [Tang L, Jin M, Xiang P, et al. Berberine on isoniazid-induced liver injury model mice and its mechanism[J]. China Pharmacy, 2011, 22(21): 1940-1942.] DOI: 10.3969/j.issn.1003-3734.2022.22.012.

78.Barsness KA, Bensard DD, Partrick DA, et al. IL-1beta induces an exaggerated pro- and anti-inflammatory response in peritoneal macrophages of children compared with adults[J]. Pediatr Surg Int, 2004, 20(4): 238-242. DOI: 10.1007/s00383-003-1118-y.

79.Ding C, Cicuttini F, Li J, et al. Targeting IL-6 in the treatment of inflammatory and autoimmune diseases[J]. Expert Opin Investig Drugs, 2009, 18(10): 1457-1466. DOI: 10.1517/13543780903203789.

80.Zhang Y, Zhang W, Tao L, et al. Quercetin protected against isoniazide-induced HepG2 cell apoptosis by activating the SIRT1/ERK pathway[J]. J Biochem Mol Toxicol, 2019, 33(9): e22369. DOI: 10.1002/jbt.22369.

81.Wei L, Chen WY, Hu T, et al. Effect and mechanism of propofol in hepatic ischemia/reperfusion injury of rat[J]. Eur Rev Med Pharmacol Sci, 2021, 25(12): 4185. DOI: 10.26355/eurrev_202106_26115.

82.Martins RM, Pinto Rolo A, Teodoro JS, et al. Addition of berberine to preservation solution in an animal model of ex vivo liver transplant preserves mitochondrial function and bioenergetics from the damage induced by ischemia/reperfusion[J]. Int J Mol Sci, 2018, 19, 19(1): 284. DOI: 10.3390/ijms19010284.

83.Cursio R, Colosetti P, Gugenheim J. Autophagy and liver ischemia-reperfusion injury[J]. Biomed Res Int, 2015, 2015: 417590. DOI: 10.1155/2015/417590.

84.Palikaras K, Lionaki E, Tavernarakis N. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology[J]. Nat Cell Biol, 2018, 20(9): 1013-1022. DOI: 10.1038/s41556-018-0176-2.

85.张馨月. 小檗碱激活AMPK减轻脂肪肝缺血再灌注损伤的机制[D]. 天津: 天津医科大学, 2021. https://d.wanfangdata.com.cn/thesis/ChhUaGVzaXNOZXdTMjAyNDA5MjAxNTE3MjUSCUQwMjIyNTgxMxoIa3B4MnN3OHk%3D.

86.张楠. 小檗碱对大鼠脂肪肝缺血再灌注损伤的作用[D]. 天津: 天津医科大学, 2019. https://d.wanfangdata.com.cn/thesis/ChhUaGVzaXNOZXdTMjAyNDA5MjAxNTE3MjUSCUQwMTkyNzkxNBoIdXUybzVxYWI%3D.

87.朱虹燕, 王胜军, 户占飞, 等. 小檗碱预处理对大鼠肝缺血再灌注损伤的影响[J]. 中国实验诊断学, 2021, 25(2): 259-263. [Zhu HY, Wang SJ, Hu ZF, et al. Effect of berberine pretreatment on hepatic ischemia-reperfusion injury in rats[J]. Chinese Journal of Laboratory Diagnosis, 2021, 25(2): 259-263.] DOI: 10.3969/j.issn.1007-4287.2021.02.032.

88.Kahraman A, Erkasap N, Serteser M, et al. Protective effect of quercetin on renal ischemia/reperfusion injury in rats[J]. J Nephrol, 2003, 16(2): 219-224. DOI: 10.1089/08927790360587450.

89.Jaeschke H, Woolbright BL. Current strategies to minimize hepatic ischemia-reperfusion injury by targeting reactive oxygen species[J]. Transplant Rev (Orlando), 2012, 26(2): 103-114. DOI: 10.1016/j.trre.2011.10.006.

90.Uylaş MU, Şahin A, Şahintürk V, et al. Quercetin dose affects the fate of hepatic ischemia and reperfusion injury in rats: an experimental research[J]. Int J Surg, 2018, 53: 117-121. DOI: 10.1016/j.ijsu.2018.03.043.

91.Li J, Zou B, Yeo YH, et al. Prevalence, incidence, and outcome of non-alcoholic fatty liver disease in Asia, 1999-2019: a systematic review and meta-analysis[J]. Lancet Gastroenterol Hepatol, 2019, 4(5): 389-398. DOI: 10.1016/S2468-1253(19)30039-1.

92.Younossi ZM, Koenig AB, Abdelatif D, et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes[J]. Hepatology, 2016, 64(1): 73-84. DOI: 10.1002/hep.28431.

93.Iloon Kashkooli R, Najafi SS, Sharif F, et al. The effect of berberis vulgaris extract on transaminase activities in non-alcoholic fatty liver disease[J]. Hepat Mon, 2015, 15(2): e25067. DOI: 10.5812/hepatmon.25067.

94.Afsharinasab M, Mohammad-Sadeghipour M, Hajizadeh  MR, et al. The effect of hydroalcoholic Berberis integerrima fruits extract on the lipid profile, antioxidant parameters and liver and kidney function tests in patients with nonalcoholic fatty liver disease[J]. Saudi J Biol Sci, 2020, 27(8): 2031-2037. DOI: 10.1016/j.sjbs.2020.04.037.

95.Cossiga V, Lembo V, Guarino M, et al. Berberis aristata, Elaeis guineensis and coffea canephora extracts modulate the insulin receptor expression and improve hepatic steatosis in NAFLD patients: a pilot clinical trial[J]. Nutrients, 2019, 11(12): 3070.DOI: 10.3390/nu11123070.

96.Sun Y, Xia M, Yan H, et al. Berberine attenuates hepatic steatosis and enhances energy expenditure in mice by inducing autophagy and fibroblast growth factor 21[J]. Br J Pharmacol, 2018, 175(2): 374-387. DOI: 10.1111/bph.14079.

97.Haigis MC, Guarente LP. Mammalian sirtuins--emerging roles in physiology, aging, and calorie restriction[J]. Genes Dev, 2006, 20(21): 2913-2921. DOI: 10.1101/gad.1467506.

98.Michan S, Sinclair D. Sirtuins in mammals: insights into their biological function[J]. Biochem J, 2007, 404(1): 1-13. DOI: 10.1042/BJ20070140.

99.林春梅. 小檗碱对NAFLD大鼠肝组织AMPK/SIRT1/UCP2通路的调控机制[D]. 广州: 暨南大学, 2015. https://cdmd.cnki.com.cn/Article/CDMD-10559-1015978705.htm.

100.Fan H, Chen Y, Bei W, et al. In vitro screening for antihepatic steatosis active components within coptidis rhizoma alkaloids extract using liver cell extraction with hplc analysis and a free fatty acid-induced hepatic steatosis HepG2 cell assay[J]. Evid Based Complement Alternat Med, 2013, 2013: 459390. DOI: 10.1155/2013/459390.

101.Sharma A, Anand SK, Singh N, et al. Berbamine induced activation of the SIRT1/LKB1/AMPK signaling axis attenuates the development of hepatic steatosis in high-fat diet-induced NAFLD rats[J]. Food Funct, 2021, 12(2): 892-909. DOI: 10.1039/d0fo02501a.

102.Yang H, Yang T, Heng C, et al. Quercetin improves nonalcoholic fatty liver by ameliorating inflammation, oxidative stress, and lipid metabolism in db/ db mice[J]. Phytother Res, 2019, 33(12): 3140-3152. DOI: 10.1002/ptr.6486.

103.Miao H, Ouyang H, Guo Q, et al. Chlorogenic acid alleviated liver fibrosis in methionine and choline deficient diet-induced nonalcoholic steatohepatitis in mice and its mechanism[J]. The J Nutr Biochem, 2022, 106: 109020. DOI: 10.1016/j.jnutbio.2022.109020.

104.Shi A, Li T, Zheng Y, et al. Chlorogenic acid improves NAFLD by regulating gut microbiota and GLP-1[J]. Front Pharmacol, 2021, 12: 693048. DOI: 10.3389/fphar.2021.693048.

105.Mieli-Vergani G, Vergani D, Czaja AJ, et al. Autoimmune hepatitis[J]. Nat Rev Dis Primers, 2018, 4: 18017. DOI: 10.1038/nrdp.2018.17.

106.田秋红, 刘维. 自身免疫性肝炎中西医临床研究进展[J]. 辽宁中医药大学学报, 2019, 21(9): 104-108. [Tian QH, Liu  W. Advances in clinical research of traditional Chinese and Western medicine for autoimmune hepatitis[J]. Journal of Liaoning University of Traditional Chinese Medicine, 2019, 21(9): 104-108.] DOI: 10.13194/j.issn.1673-842x.2019.09.026.

107.Ichiki Y, Aoki CA, Bowlus CL, et al. T cell immunity in autoimmune hepatitis[J]. Autoimmun Rev, 2005, 4(5): 315-321. DOI: 10.1016/j.autrev.2005.01.005.

108.Liu Y, Hao H, Hou T. Concanavalin a-induced autoimmune hepatitis model in mice: mechanisms and future outlook[J]. Open Life Sci, 2022, 17(1): 91-101. DOI: 10.1515/biol-2022-0013.

109.Kathem SH, Abdulsahib WK, Zalzala MH. Berbamine and thymoquinone exert protective effects against immune-mediated liver injury via NF-κB dependent pathway[J]. Front Vet Sci, 2022, 9: 960981. DOI: 10.3389/fvets.2022.960981.

110.Wang Y, Zhou L, Li Y, et al. The effects of berberine on concanavalin a-induced autoimmune hepatitis (AIH) in mice and the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathway[J]. Med Sci Monit, 2017, 23: 6150-6161. DOI: 10.12659/msm.907377.

111.Chiang CF, Chao TT, Su YF, et al. Metformin-treated cancer cells modulate macrophage polarization through AMPK-NF-κB signaling[J]. Oncotarget, 2017, 8(13): 20706-20718. DOI: 10.18632/oncotarget.14982.

112.Jeong GS, Lee DS, Li B, et al. Anti-inflammatory effects of lindenenyl acetate via heme oxygenase-1 and AMPK in human periodontal ligament cells[J]. Eur J Pharmacol, 2011, 670: 295-303. DOI: 10.1016/j.ejphar.2011.08.008.

113.甘露. 槲皮素治疗免疫性肝炎实验研究[D]. 成都: 四川大学, 2006. https://cdmd.cnki.com.cn/Article/CDMD-10610-2005146977.htm.

114.Ginès P, Krag A, Abraldes JG, et al. Liver cirrhosis[J]. Lancet, 2021, 398(10308): 1359-1376. DOI: 10.1016/S0140-6736(21)01374-X.

115.冯丽娟, 王宇, 贾继东. 肝硬化常见并发症的临床管理[J]. 肝脏, 2023, 28(1): 13-16. [Feng LJ, Wang Y, Jia JD. Clinical management of common complications of liver cirrhosis[J]. Chinese Hepatology, 2023, 28(1): 13-16.] DOI: 10.14000/j.cnki.issn.1008-1704.2023. 01.033.

116.窦芊, 李赢, 王园园, 等. 小檗碱对肝硬化大鼠肝功能的保护及炎症抑制作用[J]. 广州中医药大学学报, 2021, 38(12): 2708-2715. [Dou Q, Li Y, Wang YY, et al. Protective effect of berberine on liver function and inflammation inhibition in rats with liver cirrhosis[J]. Journal of Guangzhou University of Traditional Chinese Medicine, 2021, 38(12): 2708-2715.] DOI: 10.13359/j.cnki.gzxbtcm.2021.12.027.

117.Li P, Du Q, Cao Z, et al. Interferon-γ induces autophagy with growth inhibition and cell death in human hepatocellular carcinoma (HCC) cells through interferon-regulatory factor-1 (IRF-1)[J]. Cancer Lett, 2012, 314(2): 213-222. DOI: 10.1016/j.canlet.2011.09.031.

118.叶建敏. 川芎嗪对哮喘患儿外周血 Th1/Th2细胞因子的调节作用[J]. 医药导报, 2008, 27(5): 538-539. [Ye JM. Regulatory effect of ligustrazine on peripheral blood Th1/Th2 cytokines in children with asthma[J]. Herald of Medicine, 2008, 27(5): 538-539.] DOI: 10.3870/j.issn.1004-0781.2008.05.020.

119.骆中华, 吕飞. 小檗碱对大鼠肝硬化肝组织IFN-γ表达与端粒酶活性的影响[J]. 医药导报, 2015, 34(3): 306-309. [Luo  ZH, Lyu F. Effect of berberine on IFN-γ expression and telomerase activity in liver tissue of rat liver cirrhosis[J]. Herald of Medicine, 2015, 34(3): 306-309.] DOI: 10.3870/yydb.2015.03.006.

120.Poisson J, Lemoinne S, Boulanger C, et al. Liver sinusoidal endothelial cells: physiology and role in liver diseases[J]. J Hepatol, 2017, 66(1): 212-227. DOI: 10.1016/j.jhep.2016.07.009.

121.Faillaci F, Marzi L, Critelli R, et al. Liver angiopoietin-2 is a key predictor of de novo or recurrent hepatocellular cancer after hepatitis C virus direct-acting antivirals[J]. Hepatology, 2018, 68(3): 1010-1024. DOI: 10.1002/hep.29911.

122.Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(7): 397-411. DOI: 10.1038/nrgastro.2017.38.

123.Wang Y, Tai YL, Zhao D, et al. Berberine prevents disease progression of nonalcoholic steatohepatitis through modulating multiple pathways[J]. Cells, 2021, 10(2): 210. DOI: 10.3390/cells10020210.

124.Zhou M, Deng Y, Liu M, et al. The Pharmacological activity of Berberine, a review for liver protection[J]. Eur J Pharmacol, 2021, 890: 173655. DOI: 10.1016/j.ejphar.2020.173655.

125.Yi J, Wu S, Tan S, et al. Berberine alleviates liver fibrosis through inducing ferrous redox to activate ros-mediated hepatic stellate cells ferroptosis[J]. Cell Death Discov, 2021, 7(1): 374. DOI: 10.1038/s41420-021-00768-7.

126.Xu X, Yi H, Wu J, et al. Therapeutic effect of berberine on metabolic diseases: both pharmacological data and clinical evidence[J]. 2021, 133: 110984. DOI: 10.1016/j.biopha.2020.110984.

127.权虎, 石磊, 陈杰, 等. 肿瘤微环境在肝细胞癌中的研究进展 [J]. 肿瘤药学, 2023, 13(2): 150-154. [Quan H, Shi L, Chen J, et al. Research progress of tumor microenvironment in hepatocellular carcinoma[J]. Anti-Tumor Pharmacy, 2023, 13(2): 150-154.] DOI: 10.3969/j.issn.2095-1264.2023.02.03.

128.Anwar MA, Tabassam S, Gulfraz M, et al. Isolation of oxyberberine and β-sitosterol from berberis lycium royle root bark extract and in vitro cytotoxicity against liver and lung cancer cell lines[J]. Evid Based Complement Alternat Med, 2020, 2020: 2596082. DOI: 10.1155/2020/2596082.

129.Ilyas S, Tabasum R, Iftikhar A, et al. Effect of Berberis vulgaris  L. root extract on ifosfamide-induced in vivo toxicity and in vitro cytotoxicity[J]. Sci Rep, 2021, 11(1): 1708. DOI: 10.1038/s41598-020-80579-5.

130.Abd El-Wahab AE, Ghareeb DA, Sarhan EE, et al. In vitro biological assessment of berberis vulgaris and its active constituent, berberine: antioxidants, anti-acetylcholinesterase, anti-diabetic and anticancer effects[J]. BMC Complement Altern Med, 2013, 13(1): 218. DOI: 10.1186/1472-6882-13-218.

131.牛成伟, 季超凡, 杜丽娜, 等. 顺铂对不同性别小鼠肝肾毒性的比较研究[J]. 毒理学杂志, 2017, 31(1): 63-66. [Niu  CW, Ji CF, Du LN, et al. Comparative study on hepatic and renal toxicity of cisplatin in mice of different sexes[J]. Journal of Toxicology, 2017, 31(1): 63-66.] https://www.cnki.com.cn/Article/CJFDTOTAL-WSDL201701015.htm.

132.Gholampour F, Masoudi R, Khaledi M, et al. Berberis integerrima hydro-alcoholic root extract and its constituent berberine protect against cisplatin-induced nephro-and hepato-toxicity[J]. Am J Med Sci, 2022, 364(1): 76-87. DOI: 10.1016/j.amjms.2021.10.037.

133.Lin Z, Li S, Guo P, et al. Columbamine suppresses hepatocellular carcinoma cells through down-regulation of PI3K/AKT, p38 and ERK1/2 MAPK signaling pathways[J]. Life Sci, 2019, 218: 197-204. DOI: 10.1016/j.lfs.2018.12.038.

134.Yu B, Liu L, Yan J, et al. Effect of berbamine on invasion and metastasis of human liver cancer SMMC-7721 cells and its possible mechanism[J]. Anticancer Drugs, 2022, 33(1): e178-e185. DOI: 10.1097/CAD.0000000000001179.

135.Cao Y, Cao J, Yu B, et al. Berbamine induces SMMC-7721 cell apoptosis via upregulating p53, downregulating survivin expression and activating mitochondria signaling pathway[J]. Exp Ther Med, 2018, 15(2): 1894-1901. DOI: 10.3892/etm.2017.5637.

136.Wang GY, Zhang JW, Lü QH, et al. Berbamine induces apoptosis in human hepatoma cell line SMMC7721 by loss in mitochondrial transmembrane potential and caspase activation[J]. J Zhejiang Univ Sci B, 2007, 8(4): 248-255. DOI: 10.1631/jzus.2007.B0248.

137.Meng Z, Li T, Ma X, et al. Berbamine inhibits the growth of liver cancer cells and cancer-initiating cells by targeting Ca2+/calmodulin-dependent protein kinase II[J]. Mol Cancer Ther, 2013, 12(10): 2067-2077. DOI: 10.1158/1535-7163.MCT-13-0314.

138.Yang S, Yang S, Zhang H, et al. Targeting Na+/K+-ATPase by berbamine and ouabain synergizes with sorafenib to inhibit hepatocellular carcinoma[J]. Br J Pharmacol, 2021, 178(21): 4389-4407. DOI: 10.1111/bph.15616.

139.Zhang H, Yang S, Wang J, et al. Blockade of AMPK-Mediated cAMP-PKA-CREB/ATF1 signaling synergizes with aspirin to inhibit hepatocellular carcinoma[J]. Cancers (Basel), 2021, 13(7): 1738. DOI: 10.3390/cancers13071738.

140.Carrasco-Torres G, Monroy-Ramírez HC, Martínez-Guerra AA, et al. Quercetin reverses rat liver preneoplastic lesions induced by chemical carcinogenesis[J]. Oxid Med Cell Longev, 2017, 2017: 4674918. DOI: 10.1155/2017/4674918.

141.Cui Y, Zhou Q, Jin M, et al. Research progress on pharmacological effects and bioavailability of berberine[J]. Naunyn Schmiedebergs Arch Pharmacol, 2024, 397(11): 8485-8514. DOI: 10.1007/s00210-024-03199-0.

142.周剑雄, 吴送姑, 龚俊波, 等. 小檗碱的药理活性以及提升其口服生物利用度的策略[J]. 药学学报, 2022, 57(5): 1263-1272. [Zhou JX, Wu SG, Gong JB, et al. Pharmacological activity of berberine and strategies to enhance its oral bioavailability[J]. Chinese Journal of Pharmaceutical Sciences, 2022, 57(5): 1263-1272.] DOI: 10.16438/j.0513-4870.2021-1302.

143.Sultana B, Yaqoob S, Zafar Z, Bhatti HN. Escalation of liver malfunctioning: a step toward Herbal Awareness[J]. J Ethnopharmacol, 2018, 216: 104-119. DOI: 10.1016/j.jep.2018.01.002.

144.武一, 潘晨, 姜静, 等. 2016—2023年中国119家医疗机构肝病门诊保肝药用药分析[J]. 中国药学杂志, 2024, 59(17): 1658-1664. [Wu Y, Pan C, Jiang J, et al. Analysis of hepatoprotective drugs used in liver disease outpatient clinics of 119 medical institutions in China from 2016 to 2023[J]. Chinese Journal of Pharmaceutical Sciences, 2024, 59(17): 1658-1664.] DOI: 10.11669/cpj.2024.17.014.

145.罗嘉裕, 罗方云, 李金垄. 盐酸小檗碱联合复方甘草酸苷治疗非酒精性脂肪性肝病的临床效果及安全性[J]. 中国医学创新, 2024, 21(31): 58-62. [Luo JY, Luo FY, Li JL. Clinical effect and safety of berberine hydrochloride combined with compound glycyrrhizin in the treatment of non-alcoholic fatty liver disease[J]. Medical Innovation of China, 2024, 21(31): 58-62.] DOI: 10.3969/j.issn.1674-4985.2024.31.014.

Popular papers
Last 6 months