Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 29,2025 No.7 Detail

Screening and preliminary validation of anti-gout drugs based on transcriptomics

Published on Jul. 30, 2025Total Views: 57 times Total Downloads: 14 times Download Mobile

Author: ZOU Qian 1, 2 ZHANG Peng 3 CHEN Qiuling 1, 2 LIN Siqi 1, 2 YAN Xue 1, 2 CHEN Penglong 1, 2

Affiliation: 1. Department of Pharmacy, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510422, China 2. Guangdong Clinical Resarch Academy of Chinese Medicine, Guangzhou 510422, China 3 .Clinical Medical College/Pharmacy Department of Jiujiang University Affiliated Hospital, Jiujiang 332000, Jiangxi Province, China

Keywords: Gout Connectivity map Transcriptome Uric acid Mitogen-activated protein kinase

DOI: 10.12173/j.issn.2097-4922.202501056

Reference: ZHOU Qian, ZHANG Peng, CHEN Qiuling, LIN Siqi, YAN Xue, CHEN Penglong. Screening and preliminary validation of anti-gout drugs based on transcriptomics[J]. Yaoxue QianYan Zazhi, 2025, 29(7): 1081-1089. DOI: 10.12173/j.issn.2097-4922.202501056.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Objective  To explore new anti-gout drugs based on transcriptomics and conduct preliminary validation.

Methods  Gout transcriptome data were obtained from the Gene Expression Omnibus (GEO) database, and differentially expressed genes (DEGs) were screened using thresholds of |logFC|>1 and P<0.05. KEGG pathway enrichment analysis and protein-protein interaction (PPI) network analysis were performed on the DEGs. Candidate gout drugs were predicted via connectivity map (CMap), with molecular docking assessing binding affinity, and the compounds’ absorption, distribution, metabolism, excretion, and toxicity properties were evaluated. An in vitro model of uric acid-induced injury in human renal proximal tubular epithelial (HK-2) cells was established to examine the effects of PD-98059 on interleukin (IL)-6 and tumor necrosis factor-alpha (TNF-α) expression in HK-2 cells.

Results  A total of 373 DEGs were identified in the GSE214587 gout dataset, including 228 upregulated and 145 downregulated genes, primarily enriched in signaling pathways such as TNF signaling pathway, NF-κB signaling pathway, C-type lectin receptor signaling pathway, and mitogen-activated protein kinase (MAPK) signaling pathway. PPI network analysis revealed C-C motif chemokine ligand 2 (CCL2), colony stimulating factor 2 (CSF2), TNF, mitogen-activated protein kinase kinase 1 (MAP2K1), prostaglandin-endoperoxide synthase 2 (PTGS2), suppressor of cytokine signaling 3 (SOCS3), cluster of differentiation (CD) 86, CD40, C-X-C motif chemokine ligand (CXCL) 1, vascular endothelial growth factor A (VEGFA), CD14, CD274, B-cell lymphoma-2 gene (Bcl-2), CXCL2, steroid receptor coactivator (SRC), and IL-1 receptor antagonist as core genes involved in gout pathogenesis. CMap platform predictions identified mitogen-activated protein kinase kinase (MEK) inhibitors as potential gout treatments, with six predicted MEK inhibitors demonstrating good druggability and safety, as well as strong binding affinity to MEK proteins. Cell validation experiments indicated that PD-98059 can reverse uric acid-induced upregulation of TNF-α and IL-6 expression.

Conclusion  The integration of transcriptomics and CMap drug discovery provides a novel approach for the development of anti-gout medications.

Full-text
Please download the PDF version to read the full text: download
References

1.Dalbeth N, Merriman TR, Stamp LK. Gout[J]. Lancet, 2016, 388(10055): 2039-2052. DOI: 10.1016/S0140-6736(16)00346-9.

2.Vargas-Santos AB, Neogi T. Management of gout and hyperuricemia in CKD[J]. Am J Kidney Dis, 2017, 70(3): 422-439. DOI: 10.1053/j.ajkd.2017.01.055.

3.Afinogenova Y, Danve A, Neogi T. Update on gout management: what is old and what is new[J]. Curr Opin Rheumatol, 2022, 34(2): 118-124. DOI: 10.1097/BOR.0000000000000861.

4.Gelber AC. Treatment guidelines in gout[J]. Rheum Dis Clin North Am, 2022, 48(3): 659-678. DOI: 10.1016/j.rdc.2022.04.003.

5.Zhao Y, Chen X, Chen J, et al. Decoding connectivity Map-based drug repurposing for oncotherapy[J]. Brief Bioinform, 2023, 24(3): bbad142. DOI: 10.1093/bib/bbad142.

6.Lamb J, Crawford ED, Peck D, et al. The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease[J]. Science, 2006, 313(5795): 1929-1935. DOI: 10.1126/science.1132939.

7.Lee J, Liu J, Feng X, et al. Withaferin A is a leptin sensitizer with strong antidiabetic properties in mice[J]. Nat Med, 2016, 22(9): 1023-1032. DOI: 10.1038/nm.4145.

8.Uva P, Bosco MC, Eva A, et al. Connectivity map analysis indicates PI3K/Akt/mTOR inhibitors as potential anti-hypoxia drugs in neuroblastoma[J]. Cancers (Basel), 2021, 13(11): 2809. DOI: 10.3390/cancers13112809.

9.Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets—update[J]. Nucleic Acids Res, 2012, 41(D1): D991-D995. DOI: 10.1093/nar/gks1193.

10.Li H, Qian F, Liu H, et al. Elevated uric acid levels promote vascular smooth muscle cells (VSMC) proliferation via an nod-like receptor protein 3 (NLRP3)-inflammasome-dependent mechanism[J]. Med Sci Monit, 2019, 25: 8457-8464. DOI: 10.12659/MSM.916667.

11.Zhou Y, Zhou B, Pache L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets[J]. Nat Commun, 2019, 10(1): 1523.  DOI: 10.1038/s41467-019-09234-6.

12.Doncheva NT, Morris JH, Gorodkin J, et al. Cytoscape StringApp: network analysis and visualization of proteomics data[J]. J Proteome Res, 2018, 18(2): 623-632. DOI: 10.1021/acs.jproteome.8b00702.

13.Duan C, Jiang Q, Jiang X, et al. Discovery of a novel inhibitor structure of mycobacterium tuberculosis isocitrate lyase[J]. Molecules, 2022, 27(8): 2447. DOI: 10.3390/molecules27082447.

14.Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules[J]. Sci Rep, 2017, 7(1): 42717. DOI: 10.1038/srep42717.

15.Banerjee P, Eckert AO, Schrey AK, et al. ProTox-II: a webserver for the prediction of toxicity of chemicals[J]. Nucleic Acids Res, 2018, 46(W1): W257-W263. DOI: 10.1093/nar/gky318.

16.Milanesi S, Verzola D, Cappadona F, et al. Uric acid and angiotensin II additively promote inflammation and oxidative stress in human proximal tubule cells by activation of toll-like receptor 4[J]. J Cell Physiol, 2019, 234(7): 10868-10876. DOI: 10.1002/jcp.27929.

17.Zheng J, Gong S, Wu G, et al. Berberine attenuates uric acid-induced cell injury by inhibiting NLRP3 signaling pathway in HK-2 cells[J]. Naunyn Schmiedebergs Arch Pharmacol, 2023, 396(10): 2405-2416. DOI: 10.1007/s00210-023-02451-3.

18.Wu C, Xu X, Shi Y, et al. Neutrophil extracellular trap formation model induced by monosodium urate and phorbol myristate acetate: involvement in MAPK signaling pathways[J]. Int J Mol Sci, 2024, 26(1): 143. DOI: 10.3390/ijms26010143.

19.Ullah R, Yin Q, Snell AH, et al. RAF-MEK-ERK pathway in cancer evolution and treatment[J]. Semin Cancer Biol, 2022, 85: 123-154. DOI: 10.1016/j.semcancer.2021.05.010.

20.Yan Y, Yu L, Chen B, et al. Mastoparan M suppressed NLRP3 inflammasome activation by inhibiting MAPK/NF-κB and oxidative stress in gouty arthritis[J]. J Inflamm Res, 2023, 16: 6179-6193. DOI: 10.2147/JIR.S434587.

21.牛梦伟, 刘畅, 杨小英, 等. “山银花-忍冬藤”药对调节Ras/MEK/ERK通路干预痛风性关节炎的作用及机制[J]. 中国医院药学杂志, 2025, 45(8): 866-871. [Niu MW, Liu C, Yang XY, et al. Mechanism of Lonicera fulvotomentosa-Lonicera japonica in alleviating gouty arthritis by regulating the Ras/MEK/ERK signaling pathway[J]. Chinese Journal of Hospital Pharmacy, 2025, 45(8): 866-871.] DOI: 10.13286/j.1001-5213.2025.08.03.

22.沈雨宇, 牛梦伟, 杨小英, 等. 四妙勇安汤通过MEK1/2-ErK1/2途径改善尿酸钠诱导大鼠痛风性关节炎的作用[J]. 药物评价研究, 2024, 47(7): 1572-1582. [Shen YY, Niu MW, Yang  XY, et al. Study on mechanism of Simiao Yong'an decoction in treating MSU-induced gouty arthritis through MEK1/2-ERK1/2 pathway[J]. Drug Evaluation Research, 2024, 47(7): 1572-1582.] DOI: 10.7501/j.issn.1674-6376.2024.07.016.

23.Wiwatchaitawee K, Mekkawy AI, Quarterman JC, et al. The MEK 1/2 inhibitor PD98059 exhibits synergistic anti-endometrial cancer activity with paclitaxel in vitro and enhanced tissue distribution in vivo when formulated into PAMAM-coated PLGA-PEG nanoparticles[J]. Drug Deliv Transl Res, 2022, 12(7): 1684-1696 . DOI: 10.1007/s13346-021-01065-7.

24.Wang K, Fan Y, Chen G, et al. MEK-ERK inhibition potentiates WAY-600-induced anti-cancer efficiency in preclinical hepatocellular carcinoma (HCC) models[J]. Biochem Biophys Res Commun, 2016, 474(2): 330-337. DOI: 10.1016/j.bbrc.2016.04.099.

25.Zhao Y, Ge CC, Wang J, et al. MEK inhibitor, PD98059, promotes breast cancer cell migration by inducing β-catenin nuclear accumulation[J]. Oncol Rep, 2017, 38(5): 3055-3063. DOI: 10.3892/or.2017.5955.

26.Mekkawy AI, Naguib YW, Alhaj-Suliman SO, et al. Paclitaxel anticancer activity is enhanced by the MEK 1/2 inhibitor PD98059 in vitro and by PD98059-loaded nanoparticles in BRAFV600E melanoma-bearing mice[J]. Int J Pharm, 2021, 606: 120876. DOI: 10.1016/j.ijpharm.2021.120876.

27.黄京菊, 李诺, 韦永先, 等. 细胞外调节激酶抑制剂PD98059对大鼠心肺复苏后脑缺血再灌注损伤的改善作用及其机制 [J]. 山东医药, 2023, 63(5): 15-18. [Huang  JJ, Li N, Wei  YX, et al. Protective effect and mechanism of extracellular signal-regulated kinase inhibitor PD98059 on cerebral ischemia reperfusion injury rats after cardiopulmonary resuscitation[J]. Shandong Medical Journal, 2023, 63(5): 15-18.] DOI: 10.3969/j.issn.1002-266X.2023.05.004.

28.黄玉, 刘豆, 黄文霞, 等. PD98059抑制大鼠听泡成骨细胞增殖及分化[J]. 听力学及言语疾病杂志, 2024, 32(2): 155-161. [Huang Y, Liu D, Huang WX, et al. PD98059 Inhibits the proliferation and differentiation of osteoblasts in rat otocyst[J]. Journal of Audiology and Speech Pathology, 2024, 32(2): 155-161.] DOI: 10.3969/j.issn.1006-7299.2024.02.013.

Popular papers
Last 6 months