Chitooligosaccharides is a natural amino polysaccharide that exists in shelled marine organisms. Due to its extensive physiological activities, it has received widespread attention in the improvement of non-alcoholic fatty liver disease in recent years. Chitooligosaccharides have been shown to significantly alleviate the symptoms of metabolic dysfunction-associated fatty liver disease through a variety of mechanisms, including the inhibition of lipid synthesis, modulation of inflammatory responses, mitigation of oxidative stress, enhancement of insulin sensitivity, and regulation of gut microbiota. The specific mechanisms include inhibiting the expression of transcription factors, activating the AMPK signaling pathway to promote fatty acid oxidation, and inhibiting the activity of signaling pathways such as PI3K/AKT/mTOR. This article reviews the improvement effect and mechanism research of chitooligosaccharides in metabolic dysfunction-associated fatty liver disease, aiming to provide scientific references for its clinical application and drug development.
1.Wang TY, Wang RF, Bu ZY, et al. Association of metabolic dysfunction-associated fatty liver disease with kidney disease[J]. Nat Rev Nephrol, 2022, 18(4): 259-268. DOI: 10.1038/s41581-021-00519-y.
2.Lazarus JV, Newsome PN, Francque SM, et al. Reply: a multi-society Delphi consensus statement on new fatty liver disease nomenclature[J]. Hepatology, 2024, 79(3): E93-E94. DOI: 10.1097/hep.0000000000000696.
3.Targher G, Byrne CD, Tilg H. MASLD: a systemic metabolic disorder with cardiovascular and malignant complications[J]. Gut, 2024, 73(4): 691-702. DOI: 10.1136/gutjnl-2023-330595.
4.Eslam M, Valenti L, Romeo S. Genetics and epigenetics of NAFLD and NASH: Clinical impact[J]. J Hepatol, 2018, 68(2): 268-279. DOI: 10.1016/j.jhep.2017.09.003.
5.Ye Q, Zou B, Yeo YH, et al. Global prevalence, incidence, and outcomes of non-obese or lean non-alcoholic fatty liver disease: a systematic review and meta-analysis[J]. Lancet Gastroenterol Hepatol, 2020, 5(8): 739-752. DOI: 10.1016/s2468-1253(20)30077-7.
6.Xiao J, Wang F, Yuan Y, et al. Epidemiology of liver diseases: global disease burden and forecasted research trends[J]. Sci China Life Sci, 2025, 68(2): 541-557. DOI: 10.1007/s11427-024-2722-2.
7.Keam SJ. Resmetirom: first approval[J]. Drugs, 2024, 84(6): 729-735. DOI: 10.1007/s40265-024-02045-0.
8.Sookoian S, Pirola CJ. Resmetirom for treatment of MASH[J]. Cell, 2024, 187(12): 2897. DOI: 10.1016/j.cell.2024.05.009.
9.The Lancet Gastroenterology H. Resmetirom for NASH: balancing promise and prudence[J]. Lancet Gastroenterol Hepatol, 2024, 9(4): 273. DOI: 10.1016/s2468-1253(24)00049-9.
10.中华医学会肝病学分会脂肪肝和酒精性肝病学组. 代谢相关(非酒精性)脂肪性肝病防治指南(2024年版)[J]. 中华肝脏病杂志, 2024, 32(5): 418-434. [Fatty liver and alcoholic liver disease group, Hepatology branch, Chinese Medical Association. Guidelines for the prevention and treatment of metabolic dysfunction-associated (non-alcoholic) fatty liver disease (Version 2024)[J]. Chinese Journal of Hepatology, 2024, 32(5): 418-434.] DOI: 10.3760/cma.j.cn501113-20240327-00163.
11.Liaqat F, Eltem R. Chitooligosaccharides and their biological activities: A comprehensive review[J]. Carbohydr Polym, 2018, 184: 243-259. DOI: 10.1016/j.carbpol.2017.12.067.
12.Hao W, Li K, Li P. Review: Advances in preparation of chitooligosaccharides with heterogeneous sequences and their bioactivity[J]. Carbohydr Polym, 2021, 252: 117206. DOI: 10.1016/j.carbpol.2020.117206.
13.Naveed M, Phil L, Sohail M, et al. Chitosan oligosaccharide (COS): An overview[J]. Int J Biol Macromol, 2019, 129: 827-843. DOI: 10.1016/j.ijbiomac.2019.01.192.
14.Muanprasat C, Chatsudthipong V. Chitosan oligosaccharide: biological activities and potential therapeutic applications[J]. Pharmacol Ther, 2017, 170: 80-97. DOI: 10.1016/j.pharmthera. 2016.10.013.
15.Qian M, Lyu Q, Liu Y, et al. Chitosan oligosaccharide ameliorates nonalcoholic fatty liver disease (NAFLD) in Diet-induced obese mice[J]. Mar Drugs, 2019, 17(7): 391. DOI: 10.3390/md17070391.
16.Day CP, James OF. Steatohepatitis: a tale of two "hits"?[J]. Gastroenterology, 1998, 114(4): 842-845. DOI: 10.1016/s0016-5085(98)70599-2.
17.靳睿, 王晓晓, 刘峰, 等. 非酒精性脂肪性肝病的药物治疗进展[J]. 临床肝胆病杂志, 2022, 38(7): 1634-1640. [Jin R, Wang XX, Liu F, et al. Research advances in pharmacotherapy for nonalcoholic fatty liver disease[J]. Journal of Clinical Hepatology, 2022, 38(7): 1634-1640.] DOI: 10.3969/j.issn.1001-5256. 2022.07.033.
18.Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD) [J]. Metabolism, 2016, 65(8): 1038-1048 DOI: 10.1016/j.metabol. 2015.12.012.
19.Francque S, Szabo G, Abdelmalek MF, et al. Nonalcoholic steatohepatitis: the role of peroxisome proliferator-activated receptors[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(1): 24-39. DOI: 10.1038/s41575-020-00366-5.
20.Yang YY, Xie L, Zhang NP, et al. Updates on novel pharmacotherapeutics for the treatment of nonalcoholic steatohepatitis[J]. Acta Pharmacol Sin, 2022, 43(5): 1180-1190. DOI: 10.1038/s41401-022-00860-3.
21.Cai J, Zhang XJ, Li H. Progress and challenges in the prevention and control of nonalcoholic fatty liver disease[J]. Med Res Rev, 2019, 39(1): 328-348. DOI: 10.1002/med.21515.
22.Jou J, Choi SS, Diehl AM. Mechanisms of disease progression in nonalcoholic fatty liver disease[J]. Semin Liver Dis, 2008, 28(4): 370-379. DOI: 10.1055/s-0028-1091981.
23.Tilg H, Moschen AR. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis[J]. Hepatology, 2010, 52(5): 1836-1846. DOI: 10.1002/hep.24001.
24.Scorletti E, Carr RM. A new perspective on NAFLD: focusing on lipid droplets[J]. J Hepatol, 2022, 76(4): 934-945. DOI: 10.1016/j.jhep.2021.11.009.
25.Feng S, Sun Z, Jia X, et al. Lipophagy: molecular mechanisms and implications in hepatic lipid metabolism[J]. Front Biosci (Landmark Ed), 2023, 28(1): 6. DOI: 10.31083/j.fbl2801006.
26.Ipsen DH, Lykkesfeldt J, Tveden-Nyborg P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease[J]. Cell Mol Life Sci, 2018, 75(18): 3313-3327. DOI: 10.1007/s00018-018-2860-6.
27.郭继芬, 胡蕾, 徐赛, 等. 非酒精性脂肪肝炎的机制及治疗药物的研究进展[J]. 药物生物技术, 2020, 27(5): 479-485. [Guo JF, Hu L, Xu S, et al. Research progress on the mechanisms and therapeutic drugs for nonalcoholic steatohepatitis[J]. Pharmaceutical Biotechnology, 2020, 27(5): 479-485.] DOI: 10.19526/j.cnki.1005-8915.20200518.
28.Berk PD. Regulatable fatty acid transport mechanisms are central to the pathophysiology of obesity, fatty liver, and metabolic syndrome[J]. Hepatology, 2008, 48(5): 1362-1376. DOI: 10.1002/hep.22632.
29.Wang D, Han J, Yu Y, et al. Chitosan oligosaccharide decreases very-low-density lipoprotein triglyceride and increases high-density lipoprotein cholesterol in high-fat-diet-fed rats[J]. Exp Biol Med (Maywood), 2011, 236(9): 1064-1069. DOI: 10.1258/ebm.2011.011032.
30.Choi EH, Yang HP, Chun HS. Chitooligosaccharide ameliorates diet-induced obesity in mice and affects adipose gene expression involved in adipogenesis and inflammation[J]. Nutr Res, 2012, 32(3): 218-228. DOI: 10.1016/j.nutres.2012.02.004.
31.沈欣, 赵梦瑶, 邱勇隽, 等. 壳寡糖对体外诱导的非酒精性脂肪肝细胞模型的降脂机理研究[J]. 食品科学技术学报, 2020, 38(5): 41-47, 77. [Shen X, Zhao MY, Qiu YJ, et al. Study on the lipid-lowering mechanism of chitooligosaccharides in an in vitro induced nonalcoholic fatty liver cell model[J]. Journal of Food Science and Technology, 2020, 38(5): 41-47, 77.] DOI: 10.3969/j.issn.2095-6002.2020.05.006.
32.Deng X, Ye Z, Cao H, et al. Chitosan oligosaccharide ameliorated obesity by reducing endoplasmic reticulum stress in diet-induced obese rats[J]. Food Funct, 2020, 11(7): 6285-6296. DOI: 10.1039/d0fo01107j.
33.王健. 壳寡糖降低体内外非酒精性脂肪肝模型甘油三脂的作用及机制研究[D]. 山东: 青岛大学, 2015. https://cdmd.cnki.com.cn/Article/CDMD-11065-1015983803.htm.
34.Cao P, Huang G, Yang Q, et al. The effect of chitooligosaccharides on oleic acid-induced lipid accumulation in HepG2 cells[J]. Saudi Pharm J, 2016, 24(3): 292-298. DOI: 10.1016/j.jsps.2016.04.023.
35.Li XD, Zhao MY, Fan LQ, et al. Chitobiose alleviates oleic acid-induced lipid accumulation by decreasing fatty acid uptake and triglyceride synthesis in HepG2 cells[J]. J Funct Foods, 2018, 46: 202-211. DOI: 10.1016/j.ff.2018.04.058.
36.Zhao M, Shen X, Li X, et al. Chitooligosaccharide supplementation prevents the development of high fat diet-induced non-alcoholic fatty liver disease (NAFLD) in mice via the inhibition of cluster of differentiation 36 (CD36)[J]. J Funct Foods, 2019, 57: 18. DOI: 10.1016/j.jff.2019.03.048.
37.Batchuluun B, Pinkosky SL, Steinberg GR. Lipogenesis inhibitors: therapeutic opportunities and challenges[J]. Nat Rev Drug Discov, 2022, 21(4): 283-305. DOI: 10.1038/s41573-021-00367-2.
38.Li T, Gong H, Zhan B, et al. Chitosan oligosaccharide attenuates hepatic steatosis in HepG2 cells via the activation of AMP-activated protein kinase[J]. J Food Biochem, 2022, 46(5): e14045. DOI: 10.1111/jfbc.14045.
39.Yang Z, Danzeng A, Liu Q, et al. The role of nuclear receptors in the pathogenesis and treatment of non-alcoholic fatty liver disease[J]. Int J Biol Sci, 2024, 20(1): 113-126. DOI: 10.7150/ijbs.87305.
40.Yang X, Zhang J, Chen L, et al. Chitosan oligosaccharides enhance lipid droplets via down-regulation of PCSK9 gene expression in HepG2 cells[J]. Exp Cell Res, 2018, 366(2): 152-160. DOI: 10.1016/j.yexcr.2018.03.013.
41.Jiang Y, Fu C, Liu G, et al. Cholesterol-lowering effects and potential mechanisms of chitooligosaccharide capsules in hyperlipidemic rats[J]. Food Nutr Res, 2018, 62. DOI: 10.29219/fnr.v62.1446.
42.Yang D, Hu C, Deng X, et al. Therapeutic effect of chitooligosaccharide tablets on lipids in High-fat diets induced hyperlipidemic rats[J]. Molecules, 2019, 24(3): 514. DOI: 10.3390/molecules24030514.
43.Zhang J, Feng J, Bai Y, et al. Ameliorating the effect and mechanism of chitosan oligosaccharide on nonalcoholic fatty liver disease in mice[J]. Food Funct, 2023, 14(23): 10459-10474. DOI: 10.1039/d3fo03745b.
44.Quan HY, Kim DY, Kim SJ, et al. Betulinic acid alleviates non-alcoholic fatty liver by inhibiting SREBP1 activity via the AMPK-mTOR-SREBP signaling pathway[J]. Biochem Pharmacol, 2013, 85(9): 1330-1340. DOI: 10.1016/j.bcp.2013.02.007.
45.Marcondes-de-Castro IA, Reis-Barbosa PH, Marinho TS, et al. AMPK/mTOR pathway significance in healthy liver and non-alcoholic fatty liver disease and its progression[J]. J Gastroenterol Hepatol, 2023, 38(11): 1868-1876. DOI: 10.1111/jgh.16272.
46.Wang H, Liu Y, Wang D, et al. The upstream pathway of mTOR-mediated autophagy in liver diseases[J]. Cells, 2019, 8(12): 1597. DOI: 10.3390/cells8121597.
47.Zhang CY, Tan XH, Yang HH, et al. COX-2/sEH dual inhibitor alleviates hepatocyte senescence in NAFLD mice by restoring autophagy through Sirt1/PI3K/AKT/mTOR[J]. Int J Mol Sci, 2022, 23(15): 8267 .DOI: 10.3390/ijms23158267.
48.Wu D, Zhong P, Wang Y, et al. Hydrogen sulfide attenuates high-fat diet-induced non-alcoholic fatty liver disease by inhibiting apoptosis and promoting autophagy via reactive oxygen species/phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin signaling pathway[J]. Front Pharmacol, 2020, 11: 585860. DOI: 10.3389/fphar.2020.585860.
49.Wen J, Cao P, Yang G, et al. Changes of the mice intestinal microbes by the oligosaccharides-enriched fermented milk in a gender-dependent pattern[J]. Food Res Int, 2021, 140: 110047. DOI: 10.1016/j.foodres.2020.110047.
50.Angoa-Pérez M, Zagorac B, Francescutti DM, et al. Effects of a high fat diet on gut microbiome dysbiosis in a mouse model of Gulf War Illness [J]. Sci Rep, 2020, 10(1): 9529. DOI: 10.1038/s41598-020-66833-w.
51.Wastyk HC, Fragiadakis GK, Perelman D, et al. Gut-microbiota-targeted diets modulate human immune status[J]. Cell, 2021, 184(16): 4137-4153. DOI: 10.1016/j.cell.2021.06.019.
52.Zhou D, Fan JG. Microbial metabolites in non-alcoholic fatty liver disease[J]. World J Gastroenterol, 2019, 25(17): 2019-2028. DOI: 10.3748/wjg.v25.i17.2019.
53.Jennison E, Byrne CD. The role of the gut microbiome and diet in the pathogenesis of non-alcoholic fatty liver disease[J]. Clin Mol Hepatol, 2021, 27(1): 22-43. DOI: 10.3350/cmh.2020.0129.
54.Zheng J, Cheng G, Li Q, et al. Chitin oligosaccharide modulates gut microbiota and attenuates High-Fat-Diet-Induced metabolic syndrome in mice[J]. Mar Drugs, 2018, 16(2): 66. DOI: 10.3390/md16020066.
55.Feng J, Liu Y, Chen J, et al. Marine chitooligosaccharide alters intestinal flora structure and regulates hepatic inflammatory response to influence nonalcoholic fatty liver disease[J]. Mar Drugs, 2022, 20(6): 383. DOI: 10.3390/md20060383.
56.刘永健. 基于肠肝轴对COSM治疗NAFLD作用机制及肠溶滴丸制备的研究[D]. 广州: 广东药科大学, 2021. DOI: 10.27690/d.cnki.ggdyk.2021.000104.
57.Chen Y, Lv J, Jia Y, et al. Effect of moxibustion on the intestinal flora of rats with knee osteoarthritis induced by monosodium iodoacetate[J]. Evid Based Complement Alternat Med, 2020, 2020: 3196427. DOI: 10.1155/2020/3196427.
58.Deng M, Qu F, Chen L, et al. SCFAs alleviated steatosis and inflammation in mice with NASH induced by MCD[J]. J Endocrinol, 2020, 245(3): 425-437. DOI: 10.1530/joe-20-0018.
59.陶永彪, 汪龙德, 李正菊, 等. 肠道菌群代谢物短链脂肪酸改善非酒精性脂肪肝病的作用研究进展[J]. 中国药理学与毒理学杂志, 2023, 37(1): 47-53. [Tao YB, Wang LD, Li ZJ, et al. Research progress on the role of gut microbiota-derived short-chain fatty acids in improving nonalcoholic fatty liver disease[J]. Chinese Journal of Pharmacology and Toxicology, 2023, 37(1): 47-53.] DOI: 10.3867/j.issn.1000-3002.2023.01.006.
60.Ji XG, Chen M, Zhao MY, et al. Effects of chitooligosaccharides on the rebalance of gut microorganisms and their metabolites in patients with nonalcoholic fatty liver disease[J]. J Funct Foods, 2021, 77: 104333. DOI: 错误!超链接引用无效。.
61.Zhang Y, Ji X, Chang K, et al. The regulatory effect of chitooligosaccharides on islet inflammation in T2D individuals after islet cell transplantation: the mechanism behind Candida albicans abundance and macrophage polarization[J]. Gut Microbes, 2025, 17(1): 2442051. DOI: 10.1080/19490976.2024.2442051.
62.Chen Z, Tian R, She Z, et al. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease[J]. Free Radic Biol Med, 2020, 152: 116-141. DOI: 10.1016/j.freeradbiomed. 2020.02.025.
63.Sun SC. The non-canonical NF-κB pathway in immunity and inflammation[J]. Nat Rev Immunol, 2017, 17(9): 545-558. DOI: 10.1038/nri.2017.52.
64.Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress[J]. Curr Biol, 2014, 24(10): R453-R462. DOI: 10.1016/j.cub.2014.03.034.
65.Guo Q, Li F, Duan Y, et al. Oxidative stress, nutritional antioxidants and beyond[J]. Sci China Life Sci, 2020, 63(6): 866-874. DOI: 10.1007/s11427-019-9591-5.
66.Wang J, Jin B, Chen Y, et al. Costunolide attenuates high-fat diet-induced inflammation and oxidative stress in non-alcoholic fatty liver disease[J]. Drug Dev Res, 2024, 85(1): e22150. DOI: 10.1002/ddr.22150.
67.Li Z, Wang H, Wu K, et al. Omarigliptin protects against nonalcoholic fatty liver disease by ameliorating oxidative stress and inflammation[J]. J Biochem Mol Toxicol, 2021, 35(12): e22914. DOI: 10.1002/jbt.22914.
68.Palmieri VO, Grattagliano I, Portincasa P, et al. Systemic oxidative alterations are associated with visceral adiposity and liver steatosis in patients with metabolic syndrome[J]. J Nutr, 2006, 136(12): 3022-3026. DOI: 10.1093/jn/136.12.3022.
69.Masarone M, Rosato V, Dallio M, et al. Role of oxidative stress in pathophysiology of nonalcoholic fatty liver disease[J]. Oxid Med Cell Longev, 2018, 2018: 9547613. DOI: 10.1155/2018/9547613.
70.Zhang P, Yin Y, Wang T, et al. Maresin 1 mitigates concanavalin A-induced acute liver injury in mice by inhibiting ROS-mediated activation of NF-κB signaling[J]. Free Radic Biol Med, 2020, 147: 23-36. DOI: 10.1016/j.freeradbiomed.2019.11.033.
71.Kobyliak N, Abenavoli L, Falalyeyeva T, et al. Prevention of NAFLD development in rats with obesity via the improvement of pro/antioxidant state by cerium dioxide nanoparticles[J]. Clujul Med, 2016, 89(2): 229-235. DOI: 10.15386/cjmed-632.
72.Niu T, Xuan R, Jiang L, et al. Astaxanthin induces the Nrf2/HO-1 antioxidant pathway in human umbilical vein endothelial cells by generating trace amounts of ROS[J]. J Agric Food Chem, 2018, 66(6): 1551-1559. DOI: 10.1021/acs.jafc.7b05493.
73.Halliwell B. Free radicals and antioxidants: updating a personal view[J]. Nutr Rev, 2012, 70(5): 257-265. DOI: 10.1111/j.1753-4887.2012.00476.x.
74.Zhang Q, Liu J, Duan H, et al. Activation of Nrf2/HO-1 signaling: An important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress[J]. J Adv Res, 2021, 34: 43-63. DOI: 10.1016/j.jare.2021.06.023.
75.Tao W, Sun W, Liu L, et al. Chitosan oligosaccharide attenuates nonalcoholic fatty liver disease induced by high fat diet through reducing lipid accumulation, inflammation and oxidative stress in C57BL/6 mice[J]. Mar Drugs, 2019, 17(11): 645. DOI: 10.3390/md17110645.
76.Tilg H, Adolph TE, Moschen AR. Multiple parallel hits hypothesis in nonalcoholic fatty liver disease: revisited after a decade[J]. Hepatology, 2021, 73(2): 833-842. DOI: 10.1002/hep.31518.
77.Targher G, Corey KE, Byrne CD, et al. The complex link between NAFLD and type 2 diabetes mellitus-mechanisms and treatments[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(9): 599-612. DOI: 10.1038/s41575-021-00448-y.
78.Park H, Yoon EL, Cho S, et al. Diabetes is the strongest risk factor of hepatic fibrosis in lean patients with non-alcoholic fatty liver disease[J]. Gut, 2022, 71(5): 1035-1036. DOI: 10.1136/gutjnl-2021-325102.
79.Kumar SG, Rahman MA, Lee SH, et al. Plasma proteome analysis for anti-obesity and anti-diabetic potentials of chitosan oligosaccharides in ob/ob mice[J]. Proteomics, 2009, 9(8): 2149-2162. DOI: 10.1002/pmic.200800571.
80.Tao W, Wang G, Wei J. The role of chitosan oligosaccharide in metabolic syndrome: a review of possible mechanisms[J]. Mar Drugs, 2021, 19(9): 501. DOI: 10.3390/md19090501.
81.Tzeng HP, Liu SH, Chiang MT. Antidiabetic properties of chitosan and its derivatives[J]. Mar Drugs, 2022, 20(12): 784. DOI: 10.3390/md20120784.
82.Veličković N, Teofilović A, Ilić D, et al. Modulation of hepatic inflammation and energy-sensing pathways in the rat liver by high-fructose diet and chronic stress[J]. Eur J Nutr, 2019, 58(5): 1829-1845. DOI: 10.1007/s00394-018-1730-1.
83.Mehmood T, Pichyangkura R, Muanprasat C. Chitosan oligosaccharide promotes junction barrier through modulation of PI3K/AKT and ERK signaling intricate interplay in T84 cells[J]. Polymers (Basel), 2023, 15(7): 1681. DOI: 10.3390/polym15071681.
84.Zhou F, Zhou J, Wang W, et al. Unexpected rapid increase in the burden of NAFLD in China from 2008 to 2018: A systematic review and Meta-analysis[J]. Hepatology, 2019, 70(4): 1119-1133. DOI: 10.1002/hep.30702.
85.Ratziu V, Francque S, Behling CA, et al. Artificial intelligence scoring of liver biopsies in a phase II trial of semaglutide in nonalcoholic steatohepatitis[J]. Hepatology, 2024, 80(1): 173-185. DOI: 10.1097/hep.0000000000000723.
86.Newsome PN, Buchholtz K, Cusi K, et al. A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis[J]. N Engl J Med, 2021, 384(12): 1113-1124. DOI: 10.1056/NEJMoa2028395.
87.Younossi ZM, Ratziu V, Loomba R, et al. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial[J]. Lancet, 2019, 394(10215): 2184-2196. DOI: 10.1016/s0140-6736(19)33041-7.
88.Nakajima A, Eguchi Y, Yoneda M, et al. Randomised clinical trial: Pemafibrate, a novel selective peroxisome proliferator-activated receptor α modulator (SPPARMα), versus placebo in patients with non-alcoholic fatty liver disease[J]. Aliment Pharmacol Ther, 2021, 54(10): 1263-1277. DOI: 10.1111/apt.16596.
89.Dufour JF, Anstee QM, Bugianesi E, et al. Current therapies and new developments in NASH[J]. Gut, 2022, 71(10): 2123-2134. DOI: 10.1136/gutjnl-2021-326874.
90.Xu X, Poulsen KL, Wu L, et al. Targeted therapeutics and novel signaling pathways in non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH)[J]. Signal Transduct Target Ther, 2022, 7(1): 287. DOI: 10.1038/s41392-022-01119-3.
91.EASL-EASD-EASO Clinical practice guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD)[J]. J Hepatol, 2024, 81(3): 492-542. DOI: 10.1016/j.jhep.2024.04.031.
92.Zhang X, Lau HC, Yu J. Pharmacological treatment for metabolic dysfunction-associated steatotic liver disease and related disorders: Current and emerging therapeutic options[J]. Pharmacol Rev, 2025, 77(2): 100018. DOI: 10.1016/j.pharmr.2024.100018.
93.De Andrade R, De Araújo NK, Torres-Rêgo M, et al. Production and characterization of chitooligosaccharides: evaluation of acute toxicity, healing, and Anti-Inflammatory actions[J]. Int J Mol Sci, 2021, 22(19): 10631. DOI: 10.3390/ijms221910631.