Aprepitant (APT) is a first-line drug for treating chemotherapy-induced nausea and vomiting (CINV) and is widely used to treat nausea and vomiting symptoms in cancer patients undergoing chemotherapy. However, APT is a poorly soluble drug. Currently, clinical formulations of APT primarily include oral and conventional injectable formulations. Oral formulations have drawbacks such as low bioavailability and susceptibility to food effects, particularly making it difficult for patients with severe vomiting to take the medicine orally. Injectable formulations are inconvenient to use, have poor patient compliance, and require professional administration. Therefore, research and development of new administration routes and formulation technologies for APT are vital. This paper reviews recent advancements in APT formulation technologies, including nano-suspensions, solid dispersions, nanoemulsions, co-crystals, and cyclodextrins, which aim to improve APT solubility and bioavailability. However, most existing technologies are still in the preclinical stage and face challenges such as scalability and stability in large-scale production (contamination risks from grinding methods), safety evaluation (mechanisms of nanoemulsion distribution within the body), and cost control (screening of co-crystal ligands). Future research could explore multi-technology synergies (e.g. eutectic-nanomulsion composite systems) and emerging delivery strategies (e.g. 3D-printed formulations) to advance the clinical translation of APT formulations.
1.Gao A, Guan S, Sun Y, et al. Prolonged usage of fosaprepitant for prevention of delayed chemotherapy-induced nausea and vomiting (CINV) in patients receiving highly emetogenic chemotherapy[J]. BMC Cancer, 2023, 23(1): 609. DOI: 10.1186/s12885-023-11070-3.
2.Navari R, Binder G, Molasiotis A, et al. Duration of chemotherapy-induced nausea and vomiting (CINV) as a predictor of recurrent CINV in later cycles[J]. Oncologist, 2023, 28(3): 208-213. DOI: 10.1093/oncolo/oyac240.
3.Gupta K, Walton R, Kataria SP. Chemotherapy-induced nausea and vomiting: pathogenesis, recommendations, and new trends[J]. Cancer Treat Res Commun, 2021, 26: 100278. DOI: 10.1016/j.ctarc.2020.100278.
4.Shirley M. Netupitant/palonosetron: a review in chemotherapy-induced nausea and vomiting[J]. Drugs, 2021, 81(11): 1331-1342. DOI: 10.1007/s40265-021-01558-2.
5.Nivatsi M, Aslanidou I, Mantadakis E. Highly effective use of aprepitant in an adolescent girl with severe cyclic vomiting syndrome[J]. BMJ Case Rep, 2021, 14(3): e241132. DOI: 10.1136/bcr-2020-241132.
6.郭宗儒. 首创的神经激肽受体拮抗剂阿瑞吡坦[J]. 药学学报, 2023, 58(3): 800-804. [Guo ZR. The first neurokinin receptor antagonist, aprepitant[J]. Journal of Pharmacy, 2023, 58(3): 800-804.] DOI: 10.16438/j.0513-4870.2019-0279.
7.Zhang Z, Hao G, Sun X, et al. PVP/aprepitant microcapsules produced by supercritical antisolvent process[J]. Sci Rep, 2024, 14(1): 10679. DOI: 10.1038/s41598-024-60323-z.
8.Krishna SS, Farhana SA, Ardra TP, et al. Modulation of immune response by nanoparticle-based immunotherapy against food allergens[J]. Front Immunol, 2023, 14: 1229667. DOI: 10.3389/fimmu.2023.1229667.
9.王海亮, 张玮, 娄梅梅 ,等. 静脉注射类药品适宜给药途径分析[J]. 临床合理用药, 2024, 17(22): 109-112. [Wang HL, Zhang W, Lou MM, et al. Analysis of appropriate routes of administration for intravenous drugs[J]. Chinese Journal of Clinical Rational Drug Use, 2024, 17(22): 109-112.] DOI: 10.15887/j.cnki.13-1389/r.2024.22.032.
10.吕春艳, 厚晓庆, 崔闻宇, 等. 基于多效应稳定剂改善药物纳米结晶稳定性研究进展[J]. 中国药学杂志, 2024, 59(16): 1488-1494. [Lyu CY, Hou XQ, Cui wY, et al. Progress in improving the stability of drug nanocrystals based on multi-effect stabilizers[J]. Chinese Pharmaceutical Journal, 2024, 59(16): 1488-1494.] DOI: 10.11669/cpj.2024.16.006.
11.曹麒麟, 韩晓璐, 高静, 等. 提高难溶性药物生物利用度的研究进展[J]. 湖北科技学院学报(医学版), 2021, 35(4): 352-356. [Cao QL, Han XL, Gao J, et al. Progress in improving the bioavailability of insoluble drugs[J]. Journal of Hubei University of Science and Technology (Medical Sciences), 2021, 35(4): 352-356.] DOI: 10.16751/j.cnki.2095-4646.2021.04.0352.
12.刘晓雪, 龚俊波, 魏振平. 纳米晶体技术及其提升水难溶药物药理学功效的研究进展[J]. 药学学报, 2021, 56(12): 3431-3440. [Liu XX, Gong JB, Wei ZP. Advances in nanocrystal technology and its application to improve the pharmacological efficacy for poorly-water soluble drugs[J]. Acta Pharmaceutica Sinica, 2021, 56(12): 3431-3440.] DOI: 10.16438/j.0513-4870.2021-0416.
13.Myburgh J, Liebenberg W, Willers C, et al. Investigation and evaluation of the transdermal delivery of ibuprofen in various characterized Nano-Drug delivery systems[J]. Pharmaceutics, 2023, 15(10): 2413. DOI: 10.3390/pharmaceutics15102413.
14.Sahibzada MUK, Zahoor M, Sadiq A, et al. Bioavailability and hepatoprotection enhancement of berberine and its nanoparticles prepared by liquid antisolvent method[J]. Saudi J Biol Sci, 2021, 28(1): 327-332. DOI: 10.1016/j.sjbs.2020.10.006.
15.Thon C, Böttcher AC, Möhlen F, et al. Multi-modal framework to model wet milling through numerical simulations and artificial intelligence (part 2)[J]. Chem Engine J, 2022, 450: 137947. DOI: 10.1016/J.CEJ.2022.137947.
16.魏其鹏, 吴恒乾, 布汝朋, 等. 湿法研磨技术制备纳米制剂及质量评价研究进展[J]. 聊城大学学报(自然科学版), 2024, 37(6): 78-86. [Wei QP, Wu HQ, Bu RP, et al. Progress in the preparation and quality evaluation of nanoformulations using wet media milling technology[J]. Journal of Liaocheng University (Natural Science Edition), 2024, 37(6): 78-86.] DOI: 10.19728/j.issn1672-6634.2024030012.
17.范冉冉. 紫杉醇温敏凝胶的制备及其在预防肿瘤术后复发中的应用[D]. 安徽蚌埠: 蚌埠医学院, 2022. DOI: 10.26925/d.cnki.gbbyc.2022.000272.
18.张领, 程佳慧, 常金花, 等. 水飞蓟宾纳米混悬剂的制备与体外评价[J]. 中国医药工业杂志, 2022, 53(2): 233-239. [Zhang L, Cheng JH, Chang JH, et al. Preparation and in vitro evaluation of silybinin nanosuspension[J]. Chinese Journal of Pharmaceuticals, 2022, 53(2): 233-239.] DOI: 10.16522/j.cnki.cjph.2022.02.010.
19.刘磊. 双嘧达莫纳米混悬剂的制备与药物溶出研究[J]. 西北药学杂志, 2021, 36(3): 439-443. [Liu L. Preparation of dipyridamole nanosuspensions and simulation of drug dissolution in vivo[J]. Northwest Pharmaceutical Journal, 2021, 36(3): 439-443.] DOI: 10.3969/j. issn.1004-2407.2021.03.020.
20.李兴亚. 阿瑞匹坦纳米制剂的制备与表征[D]. 北京: 北京化工大学, 2019. DOI: 10.26939/d.cnki.gbhgu.2019.001153.
21.Angi R, Solymosi T, Ötvös Z, et al. Novel continuous flow technology for the development of a nanostructured aprepitant formulation with improved pharmacokinetic properties[J]. Eur J Pharm Biopharm, 2014, 86(3): 361-368. DOI: 10.1016/j.ejpb.2013.10.004.
22.Toziopoulou F, Malamatari M, Nikolakakis I, et al. Production of aprepitant nanocrystals by wet media milling and subsequent solidification[J]. Int J Pharm, 2017, 533(2): 324-334. DOI: 10.1016/j.ijpharm.2017.02.065.
23.Liu J, Li S, Ao W, et al. Fabrication of an aprepitant nanosuspension using hydroxypropyl chitosan to increase the bioavailability[J]. Biochem Biophyl Res Commun, 2022, 631: 72-77. DOI: 10.1016/j.bbrc.2022.09.031.
24.Kalvakuntla S, Deshpande M, Attari Z, et al. Preparation and characterization of nanosuspension of aprepitant by H96 Process[J]. Adv Pharma Bull, 2016, 6(1): 83-90. DOI: 10.15171/apb.2016.013.
25.Kakade P, Pathan Z, Gite S, et al. Nanoparticle engineering of aprepitant using nano-by-design (NbD) approach[J]. AAPS PharmSciTech, 2022, 23(6): 204. DOI: 10.1208/s12249-022-02350-5.
26.陈跃杰, 朱丹. 非晶固体分散体技术的研究现状[J]. 中国药物评价, 2021, 38(1): 14-18. [Chen YJ, Zhu D. The Research status of amorphous solid dispersion technology[J]. Chinese Journal of Drug Evaluation, 2021, 38(1): 14-18.] DOI: 10.3969/j.issn.2095-3593.2021.01.004.
27.罗怡婧, 黄桂婷, 郑琴, 等. 药物固体分散体技术回顾与展望 [J]. 中国药学杂志, 2020, 55(17): 1401-1408. [Luo YJ, Huang GT, Zheng Q, et al. Review and prospect of drug solid dispersion preparation technology[J]. Chinese Pharmaceutical Journal, 2020, 55(17): 1401-1408.] DOI: 10.11669/cpj.2020.17.001.
28.饶秋红, 刘莺燕, 李庆国, 等. 苯妥英固体分散体3种制备方法比较[J]. 中国药业, 2022, 31(20): 61-64. [Rao QH, Liu YY, Li QG, et al. Comparison of three preparation methods of phenytoin solid dispersion[J]. China Pharmaceuticals, 2022, 31(20): 61-64.] DOI: 10.3969/j.issn.1006-4931.2022.20.016.
29.Budiman A, Lailasari E, Nurani NV, et al. Ternary solid dispersions: a review of the preparation, characterization, mechanism of drug release, and physical stability[J]. Pharmaceutics, 2023, 15(8): 2116. DOI: 10.3390/pharmaceutics15082116.
30.杨兵, 赵朋, 帅思祎, 等. 热熔挤出技术在制药行业中的应用研究进展[J]. 医药导报, 2025, 44(1): 73-80. [Yang B, Zhao P, Shuai SY, et al. Research progress on the application of hot melt extrusion technology in the pharmaceutical industry[J]. Herald of Medicine, 2025, 44(1): 73-80.] DOI: 10.3870/j.issn.1004-0781.2025.01.009.
31.亢思莹, 顾宙辉, 黄鑫. 喷雾干燥技术在固体分散体制备中的应用[J]. 药学与临床研究, 2022, 30(2): 159-161. [Kang SY, Gu ZH, Huang X. Application of spray dry technology in preparation of solid dispersion[J]. Pharmaceutical and Clinical Research, 2022, 30(2): 159-161.] DOI: 10.13664/j.cnki.pcr.2022.02.017.
32.Liu J, Li Y, Ao W, et al. Preparation and characterization of aprepitant solid dispersion with HPMCAS-LF[J]. ACS Omega, 2022, 7(44): 39907-39912. DOI: 10.1021/acsomega.2c04021.
33.Liu J, Zou M, Piao H, et al. Characterization and pharmacokinetic study of aprepitant solid dispersions with Soluplus®[J]. Molecules, 2015, 20(6): 11345-11356. DOI: 10.3390/molecules200611345.
34.王冰茜, 陈挺, 杨静. 不同制备工艺对阿瑞匹坦固体分散体性质的影响[J]. 中国新药杂志, 2023, 32(21): 2191-2197. [Wang BX, Chen T, Yang J. Effect of different preparation processes on the properties of aprepitant solid dispersions[J]. Chinese Journal of New Drugs, 2023, 32(21): 2191-2197.] DOI: 10.3969/j.issn.1003-3734.2023.21.011.
35.王盈. 热熔挤出法制备阿瑞匹坦固体分散体[J]. 中国医药工业杂志, 2016, 47(8): 1077. [Wang Y. Preparation of solid dispersions of aprepitant by hot-melt extrusion[J]. Chinese Journal of Pharmaceuticals, 2016, 47(8): 1077.] https://www.cnki.com.cn/Article/CJFDTOTAL-ZHOU201608039.htm.
36.魏新春. 和厚朴酚纳米乳凝胶剂的制备及评价[D]. 沈阳: 中国医科大学, 2023. DOI: 10.27652/d.cnki.gzyku.2023.001738.
37.Nieves E, Vite G, Kozina A, et al. Ultrasound-assisted production and optimization of mini-emulsions in a microfluidic chip in continuous-flow[J]. Ultrason Sonochem, 2021, 74: 105556. DOI: 10.1016/j.ultsonch.2021.105556.
38.Preeti, Sambhakar S, Malik R, et al. Nanoemulsion: an emerging novel technology for improving the bioavailability of drugs[J]. Scientifica (Cairo), 2023, 2023: 6640103. DOI: 10.1155/2023/6640103.
39.Liang D, Feng B, Li N, et al. Preparation, characterization, and biological activity of cinnamomum cassia essential oil nano-emulsion[J]. Ultrason Sonochem, 2022, 86: 106009. DOI: 10.1016/j.ultsonch.2022.106009.
40.Xu J, Zhu X, Zhang J, et al. Nanoemulsification of soybean oil using ultrasonic microreactor: process optimization, scale-up and numbering-up in series[J]. Ultrason Sonochem, 2023, 97: 106451. DOI: 10.1016/j.ultsonch.2023.106451.
41.武晨思, 耿丹丹, 王春艳, 等. 阿瑞吡坦磷脂复合物静注亚微乳的制备及质量评价[J]. 沈阳药科大学学报, 2022, 39(10): 1165-1173. [Wu CS, Geng DD, Wang CY, et al. Preparation and quality evaluation of aprepitant phospholipid complex injectable microemulsion[J]. Journal of Shenyang Pharmaceutical University, 2022, 39(10): 1165-1173.] DOI: 10.14066/j.cnki.cn21-1349/r.2020.1310.
42.Zhang X, Wei Y, Cao Z, et al. Aprepitant intravenous emulsion based on ion pairing/phospholipid complex for improving physical and chemical stability during thermal sterilization[J]. AAPS PharmSciTech, 2020, 21(3): 75. DOI: 10.1208/s12249-019-1605-7.
43.Li Y, Yin H, Wu C, et al. Preparation and in vivo evaluation of an intravenous emulsion loaded with an aprepitant-phospholipid complex[J]. Drug Delivery, 2023, 30(1): 2183834. DOI: 10.1080/10717544.2023.2183834.
44.葛捷嘉. 新型阿瑞匹坦自微乳口服给药系统的建立及递药特性研究[D]. 重庆: 西南大学, 2020. DOI: 10.27684/d.cnki.gxndx.2020.004819.
45.孔海婷. 新型阿瑞匹坦复合微乳冻干体系的构建及体内外药学行为研究[D]. 重庆: 西南大学, 2021. DOI: 10.27684/d.cnki.gxndx.2021.004989.
46.张少钲, 单识宇, 郭敏珊, 等. 难溶性药物共晶的溶出与吸收研究进展[J]. 药学学报, 2024, 59(8): 2205-2215. [Zhang SG, Shan SY, Guo MS, et al. Recent advance on the dissolution and absorption of the cocrystals of poorly soluble drugs[J]. Acta Pharmaceutica Sinica, 2024, 59(8): 2205-2215.] DOI: 10.16438/j.0513-4870.2024-0122.
47.李鹏丽, 贾兰妮, 步玉如, 等. 药物共晶及其连续热熔挤出制备技术研究进展[J]. 医药导报, 2023, 42(7): 984-988. [Li PL, Jia LN, Bu YR, et al. Research progress on continuous melt extrusion of pharmaceutical Co-crystals[J]. Herald of Medicine, 2023, 42(7): 984-988.] DOI: 10.3870/J.issn.1004-0781.2023.07.007.
48.苏娟. 阿瑞匹坦药物共晶的制备、表征及初步质量评价[D]. 成都: 成都医学院, 2023. DOI: 10.27843/d.cnki.gcdyy.2023.000020.
49.马鑫宇, 王苗, 王春柳, 等. 超分子凝胶药物递送系统研究进展[J]. 中国药学杂志, 2024, 59(18): 1686-1694. [Ma XY, Wang M, Wang CL, et al. Advances in supramolecular gel drug delivery system[J]. Chinese Journal of Pharmacy, 2024, 59(18): 1686-1694.] DOI: 1011669/cpj.2024.18.004.
50.严家瑞, 严真, 尹莉芳. 注射用环糊精包合物研究进展 [J]. 药学研究, 2023, 42(5): 289-297. [Yan JR, Yan Z, Yin LF. Research progress of cyclodextrin inclusion complexes for injection[J]. Journal of Pharmaceutical Research, 2023, 42(5): 289-297.] DOI: 10.13506/j.cnki.jpr.2023.05.001.
51.Lei X, Zhang G, Yang T, et al. Preparation and in vitro and in vivo evaluation of rectal in situ gel of meloxicam hydroxypropyl-beta-cyclodextrin inclusion complex[J]. Molecules, 2023, 28(10): 4099. DOI: 10.3390/molecules28104099.
52.Ren L, Zhou Y, Wei P, et al. Preparation and pharmacokinetic study of aprepitant-sulfobutyl ether-β-cyclodextrin complex[J]. AAPS PharmSciTech, 2014, 15(1): 121-130. DOI: 10.1208/s12249-013-0044-0.