Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 26,2023 No.12 Detail

Research progress of drug delivery systems based on polysialic acid

Published on Jan. 24, 2024Total Views: 654 times Total Downloads: 324 times Download Mobile

Author: Yan-Rui YANG 1 Qiu-Ying HUANG 1 Yu-Hang DU 1 Yu JIAO 1 Qi-Xiong ZHANG 2 Shan-Shan LI 1

Affiliation: 1. College of Pharmacy, Southwest Minzu University, Chengdu 610225, China 2. Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu 610072, China

Keywords: Polysialic acid Drug delivery system Biological function Targeted controlled release

DOI: 10.12173/j.issn.1008-049X.202309108

Reference: Yan-Rui YANG, Qiu-Ying HUANG, Yu-Hang DU, Yu JIAO, Qi-Xiong ZHANG, Shan-Shan LI.Research progress of drug delivery systems based on polysialic acid[J].Zhongguo Yaoshi Zazhi,2023, 26(12):491-498.DOI: 10.12173/j.issn.1008-049X.202309108.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Polysialic acid (PSA) is a homopolymer consisting of N-acetylneuraminic monomers linked by α-2, 8 and (or) α-2, 9 glucoside bonds. As an endogenous polysaccharide, PSA has good biocompatibility, biodegradability, high hydrophilicity, non-immunogenicity, long-term circulation, easy modification and specific targeting to selectins. In the field of drug delivery research, PSA not only can be connected with small molecule drugs, active peptides or proteins, but also can be grafted or electrostatic cross-linked with polymers to build a variety of drug delivery systems, such as nanogels, polymer micelles, liposomes, etc. It has shown great potential value in the treatment of various disease models such as tumors, inflammatory diseases and neurological diseases. In this paper, the biological functions of PSA, the classification of drug delivery systems based on PSA and its application progress were reviewed, in order to provide reference for further application and research of PSA.

Full-text
Please download the PDF version to read the full text: download
References

1.Bonfanti L. PSA-NCAM in mammalian structural plasticity and neurogenesis[J]. Prog Neurobiol, 2006, 80(3): 129-164. DOI: 10.1016/j.pneurobio.2006.08.003.

2.Gregoriadis G, Fernandes A, Mital M, et al. Polysialic acids: potential in improving the stability and pharmacokinetics of proteins and other therapeutics[J]. Cell Mol Life Sci, 2000, 57(13-14): 1964-1969. DOI: 10. 1007/PL00000676.

3.吴剑荣, 詹晓北, 郑志永, 等. 聚唾液酸与唾液酸的研究进展[J]. 生物加工过程, 2007, 5(1): 20-26. [Wu JR, Zhan XB, Zheng ZY, et al. Recent progress in polysialic acid and sialic acid research[J]. Chinese Journal of Bioprocess Engineering, 2007, 5(1): 20-26.] DOI: 10.3969/ j.issn.1672-3678.2007.01.004.

4.郁丹凤. 聚唾液酸和唾液酸提取工艺的研究[D]. 江苏无锡: 江南大学, 2008.

5.Shastry DG, Irudayanathan FJ, Williams A, et al. Rational identification and characterisation of peptide ligands for targeting polysialic acid[J]. Sci Rep, 2020, 10(1): 7697. DOI: 10.1038/s41598-020-64088-z.

6.Pearse DD, Rao SNR, Morales AA, et al. Engineering polysialic acid on Schwann cells using polysialyltransferase gene transfer or purified enzyme exposure for spinal cord injury transplantation[J]. Neurosci Lett, 2021, 748: 135690. DOI: 10.1016/j.neulet.2021.135690.

7.Varbanov H, Jia S, Kochlamazashvili G, et al. Rescue of synaptic and cognitive functions in polysialic acid-deficient mice and dementia models by short polysialic acid fragments[J]. Neurobiol Dise, 2023, 180: 106079. DOI: 10.1016/j.nbd.2023.106079.

8.Schauer R. Achievements and challenges of sialic acid research[J]. Glycoconj J, 2000, 17(7-9): 485-499. DOI: 10.1023/A:1011062223612.

9.吴剑荣, 彭星桥, 詹晓北. 聚唾液酸, 一种非GAGs、非免疫原性生物材料的应用研究进展[J]. 中国生物工程杂志, 2017, 37(12): 96-102. [Wu JR, Peng XQ, Zhan XB. Advance in application of polysialic acid, a non-GAGs, non-immunogenic biomaterial[J]. China Biotechnology, 2017, 37(12): 96-102.] DOI: 10.13523/j. cb. 20171214.

10.Franz CK, Rutishauser U, Rafuse VF. Polysialylated neural cell adhesion molecule is necessary for selective targeting of regenerating motor neurons[J]. J Neurosci, 2005, 25(8): 2081-2091. DOI: 10.1523/JNEUROSCI.4880-04.2005.

11.Bader RA, Silvers AL, Zhang N. Polysialic acid-based micelles for encapsulation of hydrophobic drugs[J]. Biomacromolecules, 2011, 12(2): 314-320. DOI: 10.1021/bm1008603.

12.Gregoriadis G, Fernandes A, McCormack B, et al. Polysialic acids: potential role in therapeutic constructs[J]. Biotechnol Genet Eng Rev, 1999, 16: 203-215. DOI: 10. 1080/02648725.1999.10647975.

13.Wilson DR, Zhang N, Silvers AL, et al. Synthesis and evaluation of cyclosporine A-loaded polysialic acid-polycaprolactone micelles for rheumatoid arthritis[J]. Eur J Pharm Sci, 2014, 51: 146-156. DOI: 10.1016/j.ejps.2013. 09.013.

14.Ghosh M, Tuesta LM, Puentes R, et al. Extensive cell migration, axon regeneration, and improved function with polysialic acid-modified Schwann cells after spinal cord injury[J]. Glia, 2012, 60(6): 979-992. DOI: 10.1002/glia. 22330.

15.Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144(5): 646-674. DOI: 10.1016/j.cell.2011.02.013.

16.Fernandes AI, Gregoriadis G. The effect of polysialylation on the immunogenicity and antigenicity of asparaginase: implication in its pharmacokinetics[J]. Int J Pharm, 2001, 217(1-2): 215-224. DOI: 10.1016/S0378-5173(01)00603-2.

17.Greco F, Arif I, Botting R, et al. Polysialic acid as a drug carrier: evaluation of a new polysialic acid-epirubicin conjugate and its comparison against established drug carriers[J]. Polym Chem, 2013, 4(5): 1600-1609. DOI: 10. 1039/C2PY20876H.

18.Caliceti P, Veronese FM. Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates[J]. Adv Drug Deliv Rev, 2003, 55(10): 1261-1277. DOI: 10.1016/S0169-409X(03)00108-X.

19.Emam SE, Elsadek NE, Abu Lila AS, et al. Anti-PEG IgM production and accelerated blood clearance phenomenon after the administration of PEGylated exosomes in mice[J]. J Control Release, 2021, 334: 327-334. DOI: 10.1016/j. jconrel.2021.05.001.

20.郑志永, 詹晓北, 朱德强, 等. 聚唾液酸和唾液酸寡糖的生物合成及其在营养食品中的应用前景[J]. 食品科学, 2013, 34(15): 361-368. [Zheng ZY, Zhan XB, Zhu DQ, et al. Biosynthesis of polysialic acid and sialyl-oligosaccharides and their potential applications in nutraceuticals[J]. Food Science, 2013, 34(15): 361-368.] DOI: 10.7506/spkx1002-6630-201315073.

21.Gregoriadis G, Jain S, Papaioannou I, et al. Improving the therapeutic efficacy of peptides and proteins: a role for polysialic acids[J]. Int J Pharm, 2005, 300(1-2): 125-130. DOI: 10.1016/j.ijpharm.2005.06.007.

22.董冬旗. pH敏感的负载紫杉醇多聚唾液酸聚合物胶束的制备及应用[D]. 陕西杨凌: 西北农林科技大学, 2015.

23.Zeng Z, Pu K. Improving cancer immunotherapy by cell membrane-camouflaged nanoparticles[J]. Adv Funct Mater, 2020, 30(43): 2004397. DOI: 10.1002/adfm.202004397.

24.Xie W, Deng WW, Zan M, et al. Cancer cell membrane camouflaged nanoparticles to realize starvation therapy together with checkpoint blockades for enhancing cancer therapy[J]. ACS Nano, 2019, 13(3): 2849-2857. DOI: 10. 1021/acsnano.8b03788.

25.Pan DC, Myerson JW, Brenner JS, et al. Nanoparticle properties modulate their attachment and effect on carrier red blood cells[J]. Sci Rep, 2018, 8(1): 1615. DOI: 10. 1038/s41598-018-19897-8.

26.Antonelli A, Szwargulski P, Scarpa ES, et al. Development of long circulating magnetic particle imaging tracers: use of novel magnetic nanoparticles and entrapment into human erythrocytes[J]. Nanomedicine, 2020, 15(8): 739-753. DOI: 10.2217/nnm-2019-0449.

27.Gregoriadis G, McCormack B, Wang Z, et al. Polysialic acids: potential in drug delivery[J]. FEBS Lett, 1993, 315(3): 271-276. DOI: 10.1016/0014-5793(93)81177-2.

28.Liu M, Luo X, Qiu Q, et al. Redox-and pH-sensitive glycan (polysialic acid) derivatives and F127 mixed micelles for tumor-targeted drug delivery[J]. Mol Pharm, 2018, 15(12): 5534-5545. DOI: 10.1021/acs.molpharmaceut.8b00687.

29.Zhang WX, Dong DQ, Li P, et a1. Novel pH-sensitive polysialic acid based polymeric micelles for triggered intracellular release of hydrophobic drug[J]. Carbohydr Polym, 2016, 139(3): 75-81. DOI: 10.1016/j.carbpol. 2015.12.041.

30.Zhang N, Xu C, Li N, et a1. Folate receptor-targeted mixed polysialic acid micelles for combating rheumatoid arthritis: in vitro and in vivo evaluation[J]. Drug Deliv, 2018, 25(1): 1182-1191. DOI: 10.1080/10717544.2018.1472677.

31.Wu JR, Zhan XB, Zheng ZY, et al. Synthesis and characterization of polysialic acid/carboxymethyl chitosan hydrogel with potential for drug delivery[J]. Bioorg Khim, 2015, 41(5): 627-632. DOI: 10.7868/s0132342315040132.

32.Zhang N, Bader RA. Synthesis and characterization of polysialic acid-N-trimethyl chitosan nanoparticles for drug delivery[J]. Nano Life, 2012, 2(3): 1241003-1-11. DOI: 10.1142/S1793984412410036.

33.Punnappuzha A, PonnanEttiyappan J, Nishith RS, et al. Synthesis and characterization of polysialic acid-uricase conjugates for the treatment of hyperuricemia[J]. Int J Pept Res Ther, 2014, 20(4): 465-472. DOI: 10.1007/s10989-014-9411-2.

34.Jain S, Hreczuk-Hirst DH, McCormack B, et al. Polysialylated insulin: synthesis, characterization and biological activity in vivo[J]. Biochim Biophys Acta, 2003, 1622(1): 42-49. DOI: 10.1016/S0304-4165(03)00116-8.

35.Fernandes AI, Gregoriadis G. The effect of polysialylation on the immunogenicity and antigenicity of asparaginase: implication in its pharmacokinetics[J]. Int J Pharm, 2001, 217(1): 215-224. DOI: 10.1016/S0378-5173(01)00603-2.

36.Kou Y, Feng R, Chen J, et al. Development of a nattokinase-polysialic acid complex for advanced tumor treatment[J]. Eur J Pharm Sci, 2020, 145: 105241. DOI: 10.1016/j.ejps.2020.105241.

37.Zhang T, Zhou S, Hu L, et a1. Polysialic acid-modifying liposomes for efficient delivery of epirubicin, in-vitro characterization and in-vivo evaluation[J]. Int J Pharm, 2016, 515(1-2): 449-459. DOI: 10.1016/j.ijpharm.2016. 10.051.

38.Zhang Q, Li D, Guan S, et al. Tumor-targeted delivery of honokiol via polysialic acid modified zein nanoparticles prevents breast cancer progression and metastasis[J]. Int J Biol Macromol, 2022, 203: 280-291. DOI: 10.1016/j. ijbiomac.2022.01.148.

39.Wculek SK, Malanchi I. Neutrophils support lung colonization of metastasis-initiating breast cancer cells[J]. Nature, 2015, 528(7582): 413-417. DOI: 10.1038/nature 16140.

40.Fan C, Li C, Lu S, et al. Polysialic acid self-assembled nanocomplexes for neutrophil-based immunotherapy to suppress lung metastasis of breast cancer[J]. AAPS PharmSciTech, 2022, 23(4): 109. DOI: 10.1208/s12249-022-02243-7.

41.王小娟. 米诺环素多功能纳米给药系统的脊髓损伤靶向治疗研究[D]. 杭州: 浙江大学, 2018.

42.Wang XJ, Peng CH, Zhang S, et al. Polysialic-acid-based micelles promote neural regeneration in spinal cord injury therapy[J]. Nano Lett, 2019, 19(2): 829-838. DOI: 10.1021/acs.nanolett.8b04020.

43.李新健, 张冰冰, 欧则民, 等. 穿透血脑屏障靶向给药纳米载体的研究进展[J]. 中国实验方剂学杂志, 2021, 27(19): 206-215. [Li XJ, Zhang BB, Ou ZM, et al. Research progress of targeted drug delivery nanocarriers through blood-brain barrier[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2021, 27(19): 206-215.] DOI: 10.13422/j.cnki.syfjx.20211151.

44.祝亚芳. DY-9836聚合物胶束给药系统的体内药动学及血脑屏障渗透性研究[D]. 杭州: 浙江大学, 2019.

Popular papers
Last 6 months