Objective To explore and analyze the signals of pneumonia-related adverse events (ADEs) caused by endothelin receptor antagonists (ERAs) and provide reference for clinical safe medication.
Methods Based on the the U.S. Food and Drug Administration (FDA) adverse event reporting system (FAERS) database, the data from the first quarter of 2015 to the first quarter of 2023 was extracted, and reporting odds ratio, pro-portional reporting ratio, Bayesian confidence propagation neural network and multi-item gamma poisson shrinker were used for mining.
Results 7 279 reports of pneumonia-related ADEs with ERAs as the main suspects were extracted, including 3 705 reports of ambrisentan, 1 028 reports of bosentan and 2 546 reports of macitentan. There were 68 pneumonia ADEs related to ERAs, including 21 ambrisentan, 25 bosentan and 22 macitentan. According to the criteria for judging the signal of ADEs, there were 14 kinds of ADEs that formed signals, and all the systems involved in system organ classification were infections and infectious diseases. Infectious pneumonia accounted for the highest proportion of adverse reactions (93.61%) and caused the most deaths.
Conclusion In the real world, ERAs can lead to pneumonia related ADEs. Female, elderly, and high-dose are important factors in the occurrence of pneumonia-related ADEs, which suggests that medical personnel need to individualized use drugs based on the patient's physiological status and drug characteristics when using ERAs to ensure medication safety.
1.Pitre T, Su J, Cui S, et al. Medications for the treatment of pulmonary arterial hypertension: a systematic review and network Meta-analysis[J]. Eur Respir Rev, 2022, 31(165): 220036. DOI: 10.1183/16000617.0036-2022.
2.梁宇, 杜冠华. 抗肺动脉高压药物研究进展[J]. 中国药理学通报, 2019, 35(7): 902-926. [Liang Y, Du GH. Progress in research of drugs for the treatment of pulmonary hypertension[J]. Chinese Pharmacological Bulletin, 2019, 35(7): 902-926.] DOI: 10.3969/j.issn.1001-1978. 2019.07.004.
3.Fu WH, He WJ, Li YX, et al. Efficacy and safety of novel-targeted drugs in the treatment of pulmonary arterial hypertension: a bayesian network Meta-analysis[J]. Drug Deliv, 2021, 28(1): 1007-1019. DOI: 10.1080/10717544.2021.1927243.
4.Bedan M, Grimm D, Wehland M, et al. A focus on macitentan in the treatment of pulmonary arterial hypertension[J]. Basic Clin Pharmacol Toxicol, 2018, 123(2): 103-113. DOI: 10.1111/bcpt.13033.
5.Galiè N, Humbert M, Vachiery JL, et al. 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension[J]. Rev Esp Cardiol (Engl Ed), 2016, 69(2): 177. DOI: 10.1016/j.rec.2016.01.002.
6.Humbert M, Kovacs G, Hoeper MM, et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension[J]. Eur Heart J, 2022, 43(38): 3618-3731. DOI: 10.1093/eurheartj/ehac237.
7.方灵芝,邱学佳,段宝京,等. 波生坦、安立生坦及马昔腾坦的药品遴选实践[J]. 中国新药与临床杂志, 2022, 41(11): 691-696. [Fang LZ, Qiu XJ, Duan BJ, et al. Practice of drug selection of bosentan, ambrisentan and macitentan[J]. Chinese Journal of New Drugs and Clinical Remedies, 2022, 41(11): 691-696.] DOI: 10.14109/j.cnki.xyylc.2022.11.11.
8.Beckmann T, Shelley P, Patel D, et al. Strategizing drug therapies in pulmonary hypertension for improved outcomes[J]. Pharmaceuticals (Basel), 2022, 15(10): 1242. DOI: 10.3390/ph15101242.
9.Correale M, Ferraretti A, Monaco I, et al. Endothelin-receptor antagonists in the management of pulmonary arterial hypertension: where do we stand?[J]. Vasc Health Risk Manag, 2018, 14: 253-264. DOI: 10.2147/VHRM.S133921.
10.胡敏, 张喆, 陈力, 等. 阿来替尼不良反应信号挖掘与分析[J]. 肿瘤药学, 2023, 13(1): 111-117. [Hu M, Zhang Z, Chen L, et al. Signal mining and analysis of adverse reactionsassociated with alectinib[J]. Anti-tumor Pharmacy, 2023, 13(1): 111-117.] DOI: 10.3969/j.issn. 2095-1264.2023.01.18.
11.任经天, 王胜锋, 侯永芳, 等. 常用药品不良反应信号检测方法介绍[J]. 中国药物警戒, 2011, 8(5): 294-298. [Ren JT, Wang SF, Hou YF, et al. Common signal detection methods of adverse drug reaction[J]. Chinese Journal of Pharmacovigilance, 2011, 8(5): 294-298.] DOI: 10.3969/j.issn.1672-8629.2011.05.013.
12.伍湘平, 张露, 黄行行, 等. 基于FAERS数据库的羟考酮中枢神经系统不良事件信号挖掘及分析[J]. 中南大学学报(医学版), 2023, 48(3): 422-434. [Wu XP, Zhang L, Huang HX, et al. Signal mining and analysis forcentralnervoussystemadverse events due totakingoxycodonebased on FAERS datadase[J]. Journal of Central South University (Medical Science), 2023, 48(3): 422-434.] DOI: 10.11817/j.issn.1672-7347.2023.220304.
13.经纬俊, 彭苗苗, 葛卫红. 基于FAERS数据库的替莫唑胺不良事件信号挖掘与分析[J]. 中国药师, 2024, 27(2): 255-263. [Jing WJ, Peng MM, Ge WH. Signal mining and analysis of temozolomide adverse events based on FAERS datadase[J]. China Pharmacist, 2024, 27(2): 255-263.] DOI: 10.12173/j.issn.1008-049X.202311238.
14.赵晓红, 颜慈霖, 潘晨, 等. 基于美国FDA不良事件报告系统的免疫检查点抑制剂相关急性肾损伤事件数据挖掘研究[J]. 中国新药杂志, 2023, 32(23): 2434-2440. [Zhao XH, Yan CL, Pan C, et al. Data mining of immune cheeckpoint inhibitors related adverse events of acute kidney injury based on FAERS[J]. Chinese Journal of New Drugs, 2023, 32(23): 2434-2440.] DOI: 10.3969/j.issn.1003-3734.2023.23.015.
15.郭思彤, 顾智淳, 陈晓宇, 等. 内皮素受体拮抗剂治疗肺动脉高压的有效性和安全性的系统评价[J]. 医药导报, 2022, 41(2): 206-212. [Guo ST, Gu ZC, Chen XY, et al. Effectiveness and safety of endothelin receptor antagonists in the treatment of pulmonary arterial hypertension: a systematic evaluation[J]. Herald of Medicine, 2022, 41(2): 206-212.] DOI: 10.3870/j.issn. 1004-0781.2022.02.012.
16.刘培尧, 鄢荣, 游蓝, 等. 基于FAERS数据库的CDK4/6抑制剂发生血栓栓塞不良事件的信号挖掘研究 [J]. 医药导报, 2023, 42(8): 1233-1238. [Liu PY, Yan R, You L, et al. Detecting thromboembolic ADR signals of cyclin-dependent kinase 4/6 inhibitors based on FAERS database[J]. Herald of Medicine, 2023, 42(8): 1233-1238.] DOI: 10.3870/j.Issn.1004-0781.2023.08.024.
17.Wu S, Hoang HB, Yang JZ, et al. Drug-drug interactions in the management of patients with pulmonary arterial hypertension[J]. Chest, 2022, 162(6): 1360-1372. DOI: 10.1016/j.chest.2022.06.042.
18.van Thor MCJ, Klooster LT, Snijder RJ, et al. Bosentan or macitentan therapy in chronic thromboembolic pulmonary hypertension?[J]. Lung, 2019, 197(6): 753-760. DOI: 10.1007/s00408-019-00274-9.
19.Mandras S, Kovacs G, Olschewski H, et al. Combination therapy in pulmonary arterial hypertension-targeting the nitric oxide and prostacyclin pathways[J]. J Cardiovasc Pharmacol Ther, 2021, 26(5): 453-462. DOI: 10.1177/10742484211006531.
20.Pestaña-Fernández M, Rubio-Rivas M, Tolosa-Vilella C, et al. Longterm efficacy and safety of monotherapy versus combination therapy in systemic sclerosis-associated pulmonary arterial hypertension: a retrospective RESCLE registry study[J]. J Rheumatol, 2020, 47(1): 89-98. DOI: 10.3899/jrheum.180595.
21.Weatherald J, Varughese RA, Liu J, et al. Management of pulmonary arterial hypertension[J]. Semin Respir Crit Care Med, 2023, 44(6): 746-761. DOI: 10.1055/s-0043-1770118.
22.Ruopp NF, Cockrill BA. Diagnosis and treatment of pulmonary arterial hypertension: a review[J]. JAMA, 2022, 327(14): 1379-1391. DOI: 10.1001/jama.2022.4402.