Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 28,2024 No.3 Detail

Research progress on quality control methods of traditional Chinese medicine based on artificial intelligence sense technology

Published on Dec. 02, 2024Total Views: 666 times Total Downloads: 91 times Download Mobile

Author: JIANG Rulan 1 LEI Jieyu 1 CHEN Wenli 2 XU Xinjun 1

Affiliation: 1. School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China 2. Department of Pharmacy, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong Province, China

Keywords: Intelligence sense Appearance character Quality evaluation through character identification Quality control Quality evaluation Identification of Chinese traditional medicine Component detection Deep learning Multi-source information fusion Image recognition technology Artificial intelligence

DOI: 10.12173/j.issn.2097-4922.202409004

Reference: JIANG Rulan, LEI Jieyu, CHEN Wenli, XU Xinjun.Research progress on quality control methods of traditional Chinese medicine based on artificial intelligence sense technology[J].Yaoxue QianYan Zazhi,2024, 28(3):550-556.DOI: 10.12173/j.issn.2097-4922.202409004.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

In order to further promote and achieve the modernization of traditional Chinese medicine, it is particularly important to establish a quality control system of traditional Chinese medicine which not only respects the theory of traditional Chinese medicine but also conforms to the development of the times. Since ancient times, the appearance character of traditional Chinese medicine, such as color, gas and taste, is one of the important criteria to distinguish its authenticity and quality. At present, the research on the appearance of traditional Chinese medicine has gradually shifted from subjective "evaluation of quality from appearance traits" to artificial intelligence sensory technology which can provide objective data support. According to the different simulated senses, intelligent sensory technology can be divided into electronic eyes, electronic nose, electronic tongue, electronic ear and electronic skin. This paper combs the principles of five kinds of artificial intelligence sensory technology and their application in the quality evaluation of traditional Chinese medicine, introduces the research status and future development trend of the quality control system of traditional Chinese medicine based on intelligent sense, in order to provide a reference for the upgrade and modern development of the quality control system of traditional Chinese medicine.

Full-text
Please download the PDF version to read the full text: download
References

1. 国家卫生健康委. 《2023年我国卫生健康事业发展统计公报》[EB/OL]. (2024-08-29) [2024-09-01]. http:// www.nhc.gov.cn/guihuaxxs/s3585u/202408/6c037610b3a54f6c8535c515844fae96.shtml.

2. 刘天睿, 金艳, 孟虎彪, 等. 论中药“辨状论质”之辨色泽与品质评价的生物学内涵研究[J]. 中国中药杂志, 2020, 45(19): 4545-4554. [Liu TR, Jin Y, Meng HB, et al. Research on the biological connotation of "distinguishing the appearance and quality" of traditional Chinese medicine[J]. China Journal of Chinese Materia Medica, 2020, 45(19): 4545-4554.] DOI: 10.19540/j.cnki.cjcmm. 20200726.102.

3. 谢宗万. 中药品种传统经验鉴别“辨状论质”论[J]. 时珍国药研究, 1994, (3): 19-21. https://d.wanfangdata.com.cn/periodical/Ch9QZXJpb2RpY2FsQ0hJTmV3UzIwMjQxMTA1MTcxMzA0Eg9zemd5Z3kxOTk0MDMwMTYaCHNtaWRkcnpp.

4. 王皓南, 田滢琦, 刘大会, 等. 中药“辨状论质”的历史、发展与应用[J]. 中药材, 2021, 44(3): 513-519. [Wang  HN, Tian YQ, Liu DH, et al. The history, development and application of "distinguishing symptoms and discussing quality" of medicine[J]. Journal of Chinese Medicinal Materials, 2021, 44(3): 513-519.] DOI: 10.13863/j.issn10014454.2021.0 3.001.

5. 李海洋, 桂新景, 侯富国, 等. 中药材和中药饮片快速鉴定技术研究进展[J]. 分析测试学报, 2023, 42(8): 1026-1038. [Li HY, Gui XJ, Hou FG, et al. Research progress on rapid identification technology of Chinese medicinal materials and Chinese herbal pieces[J]. Journal of Instrument Analysis, 2023, 42(8): 1026-1038.] DOI: 10.19969/j.fxcsxb.23051006.

6. 谢树莹, 周明, 周金海. 基于OpenCV的中药饮片“辨色”识别研究[J]. 时珍国医国药, 2018, 29(2): 510-512.[Xie SY, Zhou M, Zhou JH. Research of OpenCV-based recognition system of herbal decoction pieces[J]. Lishizhen Medicine and Materia Medica Research, 2018, 29(2): 510-512.] DOI: 10.3969/j.issn.1008-0805.2018.02.092.

7. Choi C, Lee GJ, Chang S, et al. Nanomaterial-based artificial vision systems: from bioinspired electronic eyes to in-sensor processing devices[J]. ACS Nano, 2024, 18(2): 1241-1256. DOI: 10.1021/acsnano.3c10181.

8. 韦志强. 基于外观性状-内在成分-药效的山楂炮制机制研究[D]. 成都: 成都中医药大学, 2019. DOI: 10.26988/d.cnki.gcdzu.2019.000153.

9. 薛静, 陈鹏, 朱魁, 等. 计算机图像处理和识别技术在中药研究中的应用进展[J]. 天津药学, 2023, 35(4): 69-73. [Xue J, Chen P, Zhu K, et al. Application progress of computer image processing and recognition technology in traditional Chinese medicine research[J]. Tianjin Pharmacy, 2023, 35(4): 69-73.] DOI: 10.3969/j.issn.1006-5687.2023.04.017.

10. 赵贵萍, 邬洁, 陈佳颖, 等. 高光谱遥感技术在药用植物研究中的应用现状分析[J]. 中国实验方剂学杂志, 2022, 28(22): 239-248. [Zhao GP, Wu J, Chen JY, et al. Analysis of the current application status of hyperspectral remote sensing technology in medicinal plant research  [J]. Chinese Journal of Experimental Traditional Medical Formulae, 2022, 28(22): 239-248.] https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX202222031.htm.

11. 丁常宏, 高鹏. 基于动态时间规整算法的药用植物叶片识别方法[J]. 中医药导报, 2019, 25(11): 63-66. [Ding  CH, Gao P. Leaf recognition method of medicinal plants based on dynamic time warping algorithm[J]. Guiding Journal of Traditional Chinese Medicine and Pharmacology, 2019, 25(11): 63-66.] DOI: 10.13862/j.cnki.cn43-1446/r.2019.11.017.

12. Cui YX, Liu RX, Lin ZZ, et al. Quality evaluation based on color grading: quality discrimination of the Chinese medicine Corni fructus by an E-eye[J]. Sci Rep, 2019, 9(1): 17006. DOI: 10.1038/s41598-019-53210-5.

13. 刘瑞新, 郝小佳, 张慧杰, 等. 基于电子眼技术的中药川贝母真伪及规格的快速辨识研究[J]. 中国中药杂志, 2020, 45(14): 3441-3451. [Liu RX, Hao XJ, Zhang HJ, et al. A rapid identification of authenticity and specifications of Chinese medicine Fritillariae cirrhosae bulbus based on E-eye technology[J]. China Journal of Chinese Materia Medica, 2020, 45(14): 3441-3451.] DOI: 10.19540/j.cnki.cjcmm.20200601.301.

14. 王君阳, 王吓长. 智能色选机在中药净选生产中的应用[J]. 现代工业经济和信息化, 2022, 12(6): 140-142.[Wang JY, Wang XC. Application of intelligent color sorter in traditional Chinese medicine impurity separation[J]. Modern Industrial Economy and Informationization, 2022, 12(6): 140-142.] DOI: 10.16525/j.cnki.14-1362/n.2022.06.053.

15. Persaud K, Dodd G. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose[J]. Nature, 1982, 299(5881): 352-355. DOI: 10.1038/299352a0.

16. 李艳, 谭畅舒, 杜进桥, 等. 仿生嗅觉系统研究进展 [J]. 功能材料与器件学报, 2022, 28(5): 401-408. [Li Y, Tan CS, Du JQ, et al. Progress in research on biomimetic olfactory system[J]. Journal of Functional Materials   and Devices, 2022, 28(5): 401-408.] DOI: 10.20027/j.gncq.2022.0047.

17. 拱健婷, 赵丽莹, 徐东, 等. 电子鼻联合支持向量机建立苦杏仁不同炮制品及走油程度快速判别模型[J]. 中国中药杂志, 2020, 45(10): 2389-2394. [Gong JT, Zhao  LY, Xu D, et al. Discrimination of Armeniacae Semen Amarum from different processed products and various rancidness degrees by electronic nose and support vector machine[J]. China Journal of Chinese Materia Medica, 2020, 45(10): 2389-2394.] DOI: 10.19540/j.cnki.cjcmm. 20200221.302.

18. 吴鑫雨, 邱丽媛, 王又迪, 等. 基于智能感官与多源信息融合技术的香附炮制程度快速辨识方法研究 [J]. 中草药, 2023, 54(21): 7007-7016. [Wu XY, Qiu  LY, Wang  YD, et al. Research on a rapid identification method of processing degree of Cyperus chinensis based on intelligent sensory and multi-source information fusion technology[J]. Chinese Traditional and Herbal Drugs, 2023, 54(21): 7007-7016.] DOI: 10.7501/j.issn.0253-2670. 2023.21.009.

19. 陈鹏, 肖晓燕, 梅茜, 等. 基于仿生技术对薏苡仁麸炒过程中色泽气味变化研究[J]. 中草药, 2022, 53(14): 4285-4297. [Chen P, Xiao XY, Mei X, et al. Study on color and odor changes during frying of coix seed bran based on biomimetic technology[J]. Chinese Traditional and Herbal Drugs, 2022, 53(14): 4285-4297.] https://www.nstl.gov.cn/paper_detail.html?id=b6d957708db34b943704cd8dc3d21ed1.

20. 余亦婷, 赵乙萌, 袁曦, 等. Heracles Neo超快速气相电子鼻对不同产地、生长年限及采收期黄芪药材品质评价研究[J]. 中草药, 2022, 53(5): 1328-1337. [Yu YT, Zhao YM, Yuan X, et al. Study on the quality evaluation of astragalus from different origins, growth years and harvest periods by Heracles Neo ultra-fast gas-phase electronic nose[J]. Chinese Traditional and Herbal Drugs, 2022, 53(5): 1328-1337.] DOI: 10.7501/j.issn.0253-2670.2022. 05.006.

21. Kaoru S, 山藤馨, Kiyoshi T, et al. Taste Sensor: 日本专利, JP特開2001-4583 (P2001-4583A) A[P]. 2001-01-12.

22. Lu L, Hu Z, Hu X, et al. Electronic tongue and electronic nose for food quality and safety[J]. Food Res Int, 2022, 162: 112214. DOI: 10.1 016/j.foodres.2022.112214.

23. 戚淑叶, 毛岳忠, 耿利华, 等. 现有电子舌设备的技术现状与发展趋势[J]. 药学学报, 2023, 58(11): 3165-3172. [Qi SY, Mao YZ, Geng LH, et al. Technical status and development trend of existing electronic tongue equipment[J]. Acta Pharmaceutica Sinica, 2023, 58(11): 3165-3172] DOI: 10.16438/j. 0513-4870.2023-0781.

24. 李媛媛, 王艳丽, 姚静, 等. 基于电子舌的白及及其近似饮片的快速辨识研究[J]. 世界科学技术-中医药现代化, 2021, 23(5): 1532-1539. [Li YY, Wang YL, Yao J, et al. Research on rapid identification of bletilla striata and its approximate pieces based on electronic tongue[J]. World Science and Technology-Modernization of Traditional Chinese Medicine and Materia Medica, 2021, 23(5): 1532-1539.] DOI: 10.11842/wst.20201106003.

25. Machado JC, Shimizu FM, Ortiz M, et al. Efficient praziquantel encapsulation into polymer microcapsules and taste masking evaluation using an electronic tongue[J]. Bull Chem Soc Jpn, 2018, 91(6): 865-874. DOI: 10.1246/ bcsj.20180005.

26. 张驰. 基于声学传感器阵列的非视域声源目标探测与定位方法研究[D]. 长沙: 湖南大学, 2022. DOI: 10.27135/d.cnki.ghudu.2021.003430.

27. 黄志浩. 利用压电效应进行水下声能量收集的研究 [J]. 数字海洋与水下攻防, 2023, 6(5): 638-646. [Huang  ZH. Research on underwater acoustic energy collection using piezoelectric effect[J]. Digital Ocean and Underwater Warfare, 2023, 6(5): 638-646.] DOI: 10.19838/j.issn. 2096-5753.2023.05.0 15.

28. 任扬帆, 高国伟. 传感器在脉诊领域的研究与进展[J]. 制造业自动化, 2023, 45(11): 50-56. [Ren YF, Gao GW. Research and progress of sensors in pulse diagnosis[J]. Manufacturing Automation, 2023, 45(11): 50-56.] DOI: 10.3969/j.issn.1009-0134.2023.11.011.

29. 程紫云. 基于人工势场法的机器人路径规划研究[D]. 河北廊坊: 燕山大学, 2017. DOI: 10.7666/d.D01111453.

30. Xin Li, Li X, Li X, et al. Measurement of drug lipophilicity and pKa using acoustics[J]. Anal Chem, 2012, 84(6): 2609-2613. DOI: 10.1021/ ac300087z.

31. 瞿海斌, 赵洁. 一种流化床制粒过程状态监测系统及方法: 中国专利, CN202010733490.1[P]. 2020-07-27.

32. 朱盛鼎, 陈冬冬, 雷静桃. 触觉传感器与电子皮肤研究进展[J]. 电子机械工程, 2022, 38(4): 4-9. [Chen SD, Chen DD, Lei JT. Research progress on tactile sensors and electronic skin[J]. Electro-Mechanical Engineering, 2022, 38(4): 4-9.] DOI: 10.19659/j.issn.1008-5300. 2022.04.002.

33. 徐娜, 王国栋, 陶亚楠. 柔性可穿戴压阻式压力传感器研究进展[J]. 化工进展, 2023, 42(10): 5259-5271. [Xu  N, Wang GD, Tao YN. Flexible wearable piezoresistive pressure sensors[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5259-5271.] DOI: 10.16085/j.issn.1000 -6613.2022-2228.

34. 张守胜, 庄滕飞, 方星星, 等. 条形状精细纹理的触觉感知深度识别阈值[J]. 清华大学学报(自然科学版), 2024, 64(1): 135-145. [Zhang SS, Zhuang TF, Fang XX, et al. Depth recognition thresholds of tactile perception for fine stripe texture of bar shapes[J]. Journal of Tsinghua University (Science and Technology), 2024, 64(1): 135-145.] DOI: 10.16511/j.cnki.qhdxxb.2023. 22.033.

35. 李悦. 具有纹理识别功能的压电驻极体复合薄膜电子皮肤[D]. 武汉: 华中科技大学, 2022. DOI: 10.27157/ d.cnki.ghzku.2020.004160.

36. 程磊, 修慧迪, 王文全, 等. 基于智能感官分析技术对茯苓皮五味辨识及产地鉴别的研究[J]. 辽宁中医药大学学报, 2024, 26(4): 12-16. [Cheng L, Xiu HD, Wang WQ, et al. Study on identifying the five tastes of fulingpi (Poriae cutis) from different producing areas based on intelligent sensory analytic technologies[J]. Journal of Liaoning University of Traditional Chinese Medicine, 2024, 26(4): 12-16.] DOI: 10.13194/j.issn.1673-842x.2024.04.003.

37. 李涵, 谢梦迪, 桂新景. 多源信息融合技术在中药质量评价中的应用研究进展[J]. 药学学报, 2023, 58(10): 2835-2852. [Li H, Xie MD, Gui XJ. Research progress of multi-source information fusion technology in quality evaluation of traditional Chinese medicine[J]. Acta Pharmaceutica Sinica, 2023, 58(10): 2835-2852.] DOI: 10.16438/j.05134870.202 3-0195.

38. Gui XJ, Li H, Ma R, et al. Authenticity and species identification of Fritillariae cirrhosae: a data fusion method combining electronic nose, electronic tongue, electronic eye and near infrared spectroscopy[J]. Front Chem, 2023, 11: 1179039. DOI: 10.3389/fchem.2023.1179039.

Popular papers
Last 6 months