Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 29,2025 No.4 Detail

Research progress of platelet-derived exosomes as drug delivery vehicles

Published on Apr. 29, 2025Total Views: 74 times Total Downloads: 25 times Download Mobile

Author: LONG Zechun 1 LIU Yang 2 XIE Xiangyang 3 LIU Hui 1, 2, 3

Affiliation: 1. School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei Province, China 2. School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China 3. Medical support center, General Hospital of Central Theater Command of PLA, Wuhan 430070, China

Keywords: Platelet-derived exosomes Exosomes Drug delivery system Drug targeting

DOI: 10.12173/j.issn.2097-4922.202412046

Reference: LONG Zechun, LIU Yang, XIE Xiangyang, LIU Hui. Research progress of platelet-derived exosomes as drug delivery vehicles[J]. Yaoxue QianYan Zazhi, 2025, 29(4): 713-720. DOI: 10.12173/j.issn.2097-4922.202412046.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Platelet-derived exosomes (PEVs) are a subpopulation of nanoscale extracellular vesicles released by platelets. Studies have shown that PEVs play an important regulatory role in a variety of physiological and pathological processes, such as inflammatory response, angiogenesis, and cancer progression. Thanks to its nanoscale size characteristics, PEVs have a significant high permeability and long retention effect, can effectively penetrate the vascular barrier and specifically aggregate at the target site of the disease, which makes it a highly potential drug targeted delivery carrier. However, the current safety evaluation system of PEVs has not been perfected, and its production process and quality control standards are still difficult to meet drug regulatory requirements. How to ensure the quality uniformity and stability of PEVs during large-scale production is the focus of the next step of research and development. This article systematically reviews the biological functions of PEVs, drug loading preparation methods, and the latest research progress in the field of targeted drug delivery, in order to provide a theoretical basis and practical reference for the development of new nano drug carriers.

Full-text
Please download the PDF version to read the full text: download
References

1.Billingsley MM, Haley RM, Wechsler ME, et al. Engineering precision nanoparticles for drug delivery[J]. Nat Rev Drug Discov, 2021, 20(2): 101-124. DOI: 10.1038/s41573-020-0090-8.

2.Herrmann IK, Wood MJA, Fuhrmann G. Extracellular vesicles as a next-generation drug delivery platform[J]. Nat Nanotechnol, 2021, 16(7): 748-759. DOI: 10.1038/s41565-021-00931-2.

3.Biagiotti S, Abbas F, Montanari M, et al. Extracellular vesicles as new players in drug delivery: a focus on red blood cells-derived EVs[J]. Pharmaceutics, 2023, 15(2): 365. DOI: 10.3390/pharmaceutics15020365.

4.Ying M, Zhuang J, Wei X, et al. Remote-loaded platelet vesicles for disease-targeted delivery of therapeutics[J]. Adv Funct Mater, 2018, 28(22): 1801032. DOI: 10.1002/adfm.201801032.

5.Yamanaka Y, Sawai Y, Nomura S. Platelet-derived microparticles are an important biomarker in patients with cancer-associated thrombosis[J]. Int J Gen Med, 2020, 12: 491-497. DOI: 10.2147/IJGM.S236166.

6.Eustes AS, Dayal S. The role of platelet-derived extracellular vesicles in immune-mediated thrombosis[J]. Int J Mol Sci, 2022, 23(14): 7837. DOI: 10.3390/ijms23147837.

7.Yun SH, Sim EH, Goh RY, et al. Platelet activation: the mechanisms and potential biomarkers[J]. Biomed Res Int, 2016, 2016: 9060143. DOI: 10.1155/2016/9060143.

8.Boilard E, Bellio M. Platelet extracellular vesicles and the secretory interactome join forces in health and disease[J]. Immunol Rev, 2022, 312(1): 38-51. DOI: 10.1111/imr.13119.

9.Marcoux G, Laroche A, Hasse S, et al. Platelet EVs contain an active proteasome involved in protein processing for antigen presentation via MHC-I molecules[J]. Blood, 2021, 138(25): 2607-2620. DOI: 10.1182/blood.2020009957.

10.Liu J, Kang R, Tang D. ESCRT-III-mediated membrane repair in cell death and tumor resistance[J]. Cancer Gene Ther, 2021, 28(1-2): 1-4. DOI: 10.1038/s41417-020-0200-0.

11.Meliciano A, Salvador D, Mendonça P, et al. Clinically expired platelet concentrates as a source of extracellular vesicles for targeted anti-cancer drug delivery[J]. Pharmaceutics, 2023, 15(3): 953. DOI: 10.3390/pharmaceutics15030953.

12.Wei H, Malcor JDM, Harper MT. Lipid rafts are essential for release of phosphatidylserine-exposing extracellular vesicles from platelets[J]. Sci Rep, 2018, 8(1): 9987. DOI: 10.1038/s41598-018-28363-4.

13.Bordin A, Chirivì M, Pagano F, et al. Human platelet lysate‐derived extracellular vesicles enhance angiogenesis through MIR  -126[J]. Cell Proliferat, 2022, 55(11): e13312. DOI: 10.1111/cpr.13312.

14.Lootens T, Roman BI, Stevens CV, et al. Glioblastoma-associated mesenchymal stem/stromal cells and cancer-associated fibroblasts: partners in crime?[J]. Int J Mol Sci, 2024, 25(4): 2285. DOI: 10.3390/ijms25042285.

15.Antich-Rosselló M, Forteza-Genestra MA, Calvo J, et al. Platelet-derived extracellular vesicles promote osteoinduction of mesenchymal stromal cells[J]. Bone Joint Res, 2020, 9(10): 667-674. DOI: 10.1302/2046-3758.910.BJR-2020-0111.R2.

16.Vajen T, Benedikter BJ, Heinzmann ACA, et al. Platelet extracellular vesicles induce a pro‐inflammatory smooth muscle cell phenotype[J]. J Extracell Vesicles, 2017, 6(1): 1322454. DOI: 10.1080/20013078.2017.1322454.

17.Miyazawa B, Trivedi A, Togarrati PP, et al. Regulation of endothelial cell permeability by platelet-derived extracellular vesicles[J]. J Trauma Acute Care Surg, 2019, 86(6): 931-942. DOI: 10.1097/TA.0000000000002230.

18.Gaspar RS, Ferreira PM, Mitchell JL, et al. Platelet-derived extracellular vesicles express NADPH oxidase-1 (Nox-1), generate superoxide and modulate platelet function[J]. Free Radical Biol Med, 2021, 165: 395-400. DOI: 10.1016/j.freeradbiomed.2021.01.051.

19.Graça AL, Gómez-Florit M, Osório H, et al. Controlling the fate of regenerative cells with engineered platelet-derived extracellular vesicles[J]. Nanoscale, 2022, 14(17): 6543-6556. DOI: 10.1039/D1NR08108J.

20.Pienimaeki-Roemer A, Kuhlmann K, Böttcher A, et al. Lipidomic and proteomic characterization of platelet extracellular vesicle subfractions from senescent platelets[J]. Transfusion, 2015, 55(3): 507-521. DOI: 10.1111/trf.12874.

21.Lobb RJ, Becker M, Wen S, et al. Optimized exosome isolation protocol for cell culture supernatant and human plasma[J]. J Extracell Vesicles, 2015, 4(1): 27031. DOI: 10.3402/jev.v4.27031.

22.Weng Y, Sui Z, Shan Y, et al. Effective isolation of exosomes with polyethylene glycol from cell culture supernatant for in-depth proteome profiling[J]. The Analyst, 2016, 141(15): 4640-4646. DOI: 10.1039/C6AN00892E.

23.程福, 杨璐, 李小飞, 等. 单采血小板来源外泌体的提取与鉴定[J]. 标记免疫分析与临床, 2019, 26(2): 343-346. [Cheng  F, Yang L, Li XF, et al. Extraction and identification of exosomes from single-donor platelets[J]. Labeled Immunoassays and Clinical Medicine, 2019, 26(2): 343-346.] DOI: 10.11748/bjmy.issn.1006-1703.2019.02.039.

24.李思迪, 侯信, 亓洪昭, 等. 外泌体: 为高效药物投递策略提供天然的内源性纳米载体[J]. 化学进展, 2016, 28(2): 353-362. [Li S, Hou X, Qi H, et al. Exosomes: providing natural endogenous nanocarriers for efficient drug delivery strategies[J]. Progress in Chemistry, 2016, 28(2): 353-362.] DOI: 10.7536/PC150915.

25.Waters L, Padula MP, Marks DC, et al. Cryopreserved platelets demonstrate reduced activation responses and impaired signaling after agonist stimulation[J]. Transfusion, 2017, 57(12): 2845-2857. DOI: 10.1111/trf.14310.

26.Sun D, Zhuang X, Xiang X, et al. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes[J]. Mol Ther, 2010, 18(9): 1606-1614. DOI: 10.1038/mt.2010.105.

27.Pomatto MAC, Bussolati B, D'Antico S, et al. Improved loading of plasma-derived extracellular vesicles to encapsulate antitumor miRNAs[J]. Mol Ther Methods Clin Dev, 2019, 13: 133-144. DOI: 10.1016/j.omtm.2019.01.001.

28.Faruqu FN, Xu L, Al-Jamal KT. Preparation of exosomes for siRNA delivery to cancer cells[J]. J Vis Exp, 2018, 142: 58814. DOI: 10.3791/58814.

29.陈晓峰, 王开元, 梁芳铭, 等. 外泌体递药系统及其在肿瘤治疗中的应用[J]. 化学进展, 2022, 34(4): 773-786. [Chen XF, Wang KY, Liang FM, et al. Exosome drug delivery system and its application in tumor therapy[J]. Progress in Chemistry, 2022, 34(4): 773-786.] DOI: 10.7536/PC210901.

30.Li Q, Song Y, Wang Q, et al. Engineering extracellular vesicles with platelet membranes fusion enhanced targeted therapeutic angiogenesis in a mouse model of myocardial ischemia reperfusion[J]. Theranostics, 2021, 11(8): 3916-3931. DOI: 10.7150/thno.52496.

31.Yao C, Wang C. Platelet-derived extracellular vesicles for drug delivery[J]. Biomater Sci, 2023, 11(17): 5758-5768. DOI: 10.1039/D3BM00893B.

32.Ma Q, Yao C, Shi H, al. Targeted delivery of dexamethasone in acute pneumonia[J]. Biomater Sci, 2021, 9(16): 5569-5576. DOI: 10.1039/D1BM00924A.

33.Bateman RM, Sharpe MD, Jagger JE, et al. 36th International Symposium on Intensive Care and Emergency Medicine: Brussels, Belgium. 15-18 March 2016[J]. Crit Care, 2016, 20(Suppl 2): 94. DOI: 10.1186/s13054-016-1208-6.

34.Ma Q, Fan Q, Han X, et al. Platelet-derived extracellular vesicles to target plaque inflammation for effective anti-atherosclerotic therapy[J]. J Control Release, 2021, 329: 445-453. DOI: 10.1016/j.jconrel.2020.11.064.

35.Ma Q, Bai J, Xu J, et al. Reshaping the inflammatory environment in rheumatoid arthritis joints by targeting delivery of berberine with platelet-derived extracellular vesicles[J]. Adv Nanobio Res, 2021, 1(11): 2100071. DOI: 10.1002/anbr.202100071.

36.Wei Z, Chen Z, Zhao Y, et al. Mononuclear phagocyte system blockade using extracellular vesicles modified with CD47 on membrane surface for myocardial infarction reperfusion injury treatment[J]. Biomaterials, 2021, 275: 121000. DOI: 10.1016/j.biomaterials.2021.121000.

37.Kailashiya J, Gupta V, Dash D. Engineered human platelet-derived microparticles as natural vectors for targeted drug delivery[J]. Oncotarget, 2019, 10(56): 5835-5858. DOI: 10.18632/oncotarget.27223.

38.Torres-Bustamante MI, Vazquez-Urrutia JR, Solorzano-Ibarra  F, et al. The role of miRNAs to detect progression, stratify, and predict relevant clinical outcomes in bladder cancer[J]. Int J Mol Sci, 2024, 25(4): 2178. DOI: 10.3390/ijms25042178.

39.Murshed A, Alnoud MAH, Ahmad S, et al. Genetic alchemy unveiled: microRNA-mediated gene therapy as the artisan craft in the battlefront against hepatocellular carcinoma-a comprehensive chronicle of strategies and innovations[J]. Front Genet, 2024, 15: 1356972. DOI: 10.3389/fgene.2024.1356972.

40.Guda PR, Sharma A, Anthony AJ, et al. Nanoscopic and functional characterization of keratinocyte-originating exosomes in the wound fluid of non-diabetic and diabetic chronic wound patients[J]. Nano Today, 2023, 52: 101954. DOI: 10.1016/j.nantod.2023.101954.

41.Chowdhary K, Sahu A, Iijima H, et al. Aging affects the efficacy of platelet-rich plasma treatment for osteoarthritis[J]. Am J Phys Med Rehabil, 2023, 102(7): 597-604. DOI: 10.1097/PHM.000000000000216.

42.Gupta AK, Wang T, Rapaport JA, et al. Therapeutic Potential of extracellular vesicles (exosomes) derived from platelet-rich plasma: a literature review[J]. J Cosmet Dermatol, 2025, 24(2): e16709. DOI: 10.1111/jocd.16709.

43.Puricelli C, Boggio E, Gigliotti CL, et al. Platelets, protean cells with all-around functions and multifaceted pharmacological applications[J]. Int J Mol Sci, 2023, 24(5): 4565. DOI: 10.3390/ijms24054565.

44.Gomes FG, Andrade AC, Wolf M, et al. Synergy of human platelet-derived extracellular vesicles with secretome proteins promotes regenerative functions[J]. Biomedicines, 2022, 10(2): 238. DOI: 10.3390/biomedicines10020238.

Popular papers
Last 6 months