Rapid exposure to high-altitude environments characterized by hypobaric hypoxia can induce multi-organ damage in the body. Flavonoids, as a class of safe and effective natural antioxidants, demonstrate significant therapeutic potential in preventing and treating high-altitude hypoxia-induced injuries through mechanisms involving free radical scavenging, inhibition of lipid peroxidation, and suppression of inflammatory responses. This paper systematically reviews the pathological characteristics and molecular mechanisms of hypobaric hypoxia-induced tissue and organ damage, with a focused discussion on the protective effects of flavonoids against such injuries and their multi-target mechanisms of action, aiming to provide a theoretical foundation and future research directions for the translational applications of flavonoids in the field of high-altitude medicine.
1.Zhang ZA, Sun Y, Yuan Z, et al. Insight into the effects of high-altitude hypoxic exposure on learning and memory[J]. Oxid Med Cell Longev, 2022, 2022: 4163188. DOI: 10.1155/2022/4163188.
2.Wang T, Hou J, Xiao W, et al. Chinese medicinal plants for the potential management of high-altitude pulmonary oedema and pulmonary hypertension[J]. Pharm Biol, 2020, 58(1): 815-827. DOI: 10.1080/13880209.2020.1804407.
3.Pena E, El Alam S, Siques P, et al. Oxidative stress and diseases associated with high-altitude exposure[J]. Antioxidants (Basel), 2022, 11(2): 267. DOI: 10.3390/antiox11020267.
4.Matschke V, Theiss C, Matschke J. Oxidative stress: the lowest common denominator of multiple diseases[J]. Neural Regen Res, 2019, 14(2): 238-241. DOI: 10.4103/1673-5374.244780.
5.Silber E, Sonnenberg P, Collier DJ, et al. Clinical features of headache at altitude: a prospective study[J]. Neurology, 2003, 60(7): 1167-1171. DOI: 10.1212/01.wnl.0000055876.26737.b9.
6.Beidleman BA, Tighiouart H, Schmid CH, et al. Predictive models of acute mountain sickness after rapid ascent to various altitudes[J]. Med Sci Sports Exerc, 2013, 45(4): 792-800. DOI: 10.1249/MSS.0b013e31827989ec.
7.廉国锋, 李锏, 罗勇军, 等. 高原脑水肿发病机制及防治研究进展[J]. 人民军医, 2020, 63(4): 343-346, 357. [Lian GF, Li J, Luo YJ, et al. Research progress on the pathogenesis and prevention/treatment of high-altitude cerebral edema[J]. People's Military Medical Journal, 2020, 63(4): 343-346, 357.] https://www.cnki.com.cn/Article/CJFDTOTAL-RMJZ202004013.htm.
8.Jensen JD, Vincent AL. High altitude cerebral edemahigh altitude cerebral edema (EB/OL). (2023-07-17) [2025-07-23]. https://www.ncbi.nlm.nih.gov/pubmed/28613666.
9.Turner REF, Gatterer H, Falla M, et al. High-altitude cerebral edema: its own entity or end-stage acute mountain sickness?[J]. J Appl Physiol (1985), 2021, 131(1): 313-25. DOI: 10.1152/japplphysiol.00861.2019.
10.Garay AG, Franco DM, Estrada VHN, et al. Interventions for preventing high altitude illness: Part 2. Less commonly-used drugs[J]. Cochrane Database Syst Rev, 2018, 3(3): CD012983. DOI: 10.1002/14651858.CD012983.
11.Urushida Y, Kikuchi Y, Shimizu C, et al. Improved neuroimaging findings and cognitive function in a case of high-altitude cerebral edema[J]. Intern Med, 2021, 60(8): 1299-1302. DOI: 10.2169/internalmedicine.5747-20.
12.Medhi G, Lachungpa T, Saini J. Neuroimaging features of fatal high-altitude cerebral edema[J]. Indian J Radiol Imaging, 2018, 28(4): 401-405. DOI: 10.4103/ijri.IJRI_296_18.
13.Xue Y, Wang X, Wan B, et al. Caveolin-1 accelerates hypoxia-induced endothelial dysfunction in high-altitude cerebral edema[J]. Cell Commun Signal, 2022, 20(1): 160. DOI: 10.1186/s12964-022-00976-3.
14.Troncoso M, Bannoud N, Carvelli L, et al. Hypoxia-ischemia alters distribution of lysosomal proteins in rat cortex and hippocampus[J]. Biol Open, 2018, 7(10): bio036723. DOI: 10.1242/bio.036723.
15.Zhang XY, Zhang XJ, Xv J, et al. Crocin attenuates acute hypobaric hypoxia-induced cognitive deficits of rats[J]. Eur J Pharmacol, 2018, 818: 300-305. DOI: 10.1016/j.ejphar.2017.10.042.
16.Mayoral-Rodríguez S, Pérez-Álvarez F, Timoneda-Gallart C, et al. The adventures of fundi intervention based on the cognitive and emotional processing in attention deficit hyperactive disorder patients[J]. J Vis Exp, 2020, (160): 10.3791/60187. DOI: 10.3791/60187.
17.Chauhan NR, Kumar R, Gupta A, et al. Heat stress induced oxidative damage and perturbation in BDNF/ERK1/2/CREB axis in hippocampus impairs spatial memory[J]. Behav Brain Res, 2021, 396: 112895. DOI: 10.1016/j.bbr.2020.112895.
18.Pan Z, Hu Y, Huang Z, et al. Alterations in gut microbiota and metabolites associated with altitude-induced cardiac hypertrophy in rats during hypobaric hypoxia challenge[J]. Sci China Life Sci, 2022, 65(10): 2093-2113. DOI: 10.1007/s11427-021-2056-1.
19.Wang Q, Hu L, Hu Y, et al. Carbon monoxide-saturated hemoglobin-based oxygen carriers attenuate high-altitude-induced cardiac injury by amelioration of the inflammation response and mitochondrial oxidative damage[J]. Cardiology, 2017, 136(3): 180-191. DOI: 10.1159/000448652.
20.Zhao S, Jia N, Shen Z, et al. Pretreatment with Notoginsenoside R1 attenuates high-altitude hypoxia-induced cardiac injury via activation of the ERK1/2-P90RSK-Bad signaling pathway in rats[J]. Phytother Res, 2023, 37(10): 4522-4539. DOI: 10.1002/ptr.7923.
21.Zeng Y, Li YM, Cheng Y, et al. Hypoxia-inducible factor-1α activation can attenuate renal podocyte injury and alleviate proteinuria in rats in a simulated high-altitude environment[J]. Biochem Biophys Res Commun, 2022, 602: 35-40. DOI: 10.1016/j.bbrc.2022.02.091.
22.Zouboules SM, Lafave HC, O'Halloran KD, et al. Renal reactivity: acid-base compensation during incremental ascent to high altitude[J]. J Physiol, 2018, 596(24): 6191-203. DOI: 10.1113/JP276973.
23.Chhabra V, Anand AS, Baidya AK, et al. Hypobaric hypoxia induced renal damage is mediated by altering redox pathway[J]. PLoS One, 2018, 13(7): e0195701. DOI: 10.1371/journal.pone.0195701.
24.Wei JY, Hu MY, Chen XQ, et al. Hypobaric hypoxia aggravates renal injury by inducing the formation of neutrophil extracellular traps through the nf-κB signaling pathway[J]. Curr Med Sci, 2023, 43(3): 469-477. DOI: 10.1007/s11596-023-2744-3.
25.Ortega MA, Fraile-Martinez O, García-Montero C, et al. A general overview on the hyperbaric oxygen therapy: applications, mechanisms and translational opportunities[J]. Medicina (Kaunas), 2021, 57(9): 864. DOI: 10.3390/medicina57090864.
26.Hou Y, Wang X, Chen X, et al. Establishment and evaluation of a simulated highaltitude hypoxic brain injury model in SD rats[J]. Mol Med Rep, 2019, 19(4): 2758-2766. DOI: 10.3892/mmr.2019.9939.
27.Chakraborty S, Roychoudhury S. Pathological roles of reactive oxygen species in male reproduction[J]. Adv Exp Med Biol, 2022, 1358: 41-62. DOI: 10.1007/978-3-030-89340-8_3.
28.Liao Y, Chen Z, Yang Y, et al. Antibiotic intervention exacerbated oxidative stress and inflammatory responses in SD rats under hypobaric hypoxia exposure[J]. Free Radic Biol Med, 2023, 209(Pt 1): 70-83. DOI: 10.1016/j.freeradbiomed.2023.10.002.
29.Maimaiti A, Tao Y, Minmin W, et al. Improvement of total flavonoids from Dracocephalum moldavica L. in rats with chronic mountain sickness through (1)H-NMR metabonomics[J]. Evid Based Complement Alternat Med, 2021, 2021: 6695346. DOI: 10.1155/2021/6695346.
30.Shen Z, Huang D, Jia N, et al. Protective effects of Eleutheroside E against high-altitude pulmonary edema by inhibiting NLRP3 inflammasome-mediated pyroptosis[J]. Biomed Pharmacother, 2023, 167: 115607. DOI: 10.1016/j.biopha.2023.115607.
31.Jia N, Shen Z, Zhao S, et al. Eleutheroside E from pre-treatment of acanthopanax senticosus (Rupr.et Maxim.) harms ameliorates high-Altitude-induced heart injury by regulating NLRP3 inflammasome-mediated pyroptosis via NLRP3/caspase-1 pathway[J]. Int Immunopharmacol, 2023, 121: 110423. DOI: 10.1016/j.intimp.2023.110423.
32.Ordureau A, Kraus F, Zhang J, et al. Temporal proteomics during neurogenesis reveals large-scale proteome and organelle remodeling via selective autophagy[J]. Mol Cell, 2021, 81(24): 5082-5098.e11. DOI: 10.1016/j.molcel.2021.10.001.
33.Dai S, Feng Y, Lu C, et al. Impairment of autophagic flux after hypobaric hypoxia potentiates oxidative stress and cognitive function disturbances in mice[J]. Neurosci Bull, 2024, 40(1): 35-49. DOI: 10.1007/s12264-023-01099-6.
34.Cheng Z, Shu Y, Li X, et al. Evaluation of potential cardiotoxicity of ammonia: l-selenomethionine inhibits ammonia-induced cardiac autophagy by activating the PI3K/AKT/mTOR signaling pathway[J]. Ecotoxicol Environ Saf, 2022, 233: 113304. DOI: 10.1016/j.ecoenv.2022.113304.
35.Wang L, Jiang W, Wang J, et al. Puerarin inhibits FUNDC1-mediated mitochondrial autophagy and CSE-induced apoptosis of human bronchial epithelial cells by activating the PI3K/AKT/mTOR signaling pathway[J]. Aging (Albany NY), 2022, 14(3): 1253-1264. DOI: 10.18632/aging.203317.
36.Lee HS, Kim EN, Jeong GS. Aromadendrin protects neuronal cells from methamphetamine-induced neurotoxicity by regulating endoplasmic reticulum stress and PI3K/Akt/mTOR signaling pathway[J]. Int J Mol Sci, 2021, 22(5): 2274. DOI: 10.3390/ijms22052274.
37.Sun L, Yue H, Fang H, et al. The role and mechanism of PDZ binding kinase in hypobaric and hypoxic acute lung injury[J]. J Thorac Dis, 2024, 16(3): 2082-2101. DOI: 10.21037/jtd-24-188.
38.Wang C, Li MX, Li YD, et al. Bloodletting acupuncture at jing-well points alleviates myocardial injury in acute altitude hypoxic rats by activating HIF-1α/BNIP3 signaling-mediated mitochondrial autophagy and decreasing oxidative stress[J]. Chin J Integr Med, 2023, 29(2): 170-178. DOI: 10.1007/s11655-022-3626-4.
39.Hou Y, Fan F, Xie N, et al. Rhodiola crenulata alleviates hypobaric hypoxia-induced brain injury by maintaining BBB integrity and balancing energy metabolism dysfunction[J]. Phytomedicine, 2024, 128: 155529. DOI: 10.1016/j.phymed.2024.155529.
40.Rathor R, Suryakumar G, Singh SN. Diet and redox state in maintaining skeletal muscle health and performance at high altitude[J]. Free Radic Biol Med, 2021, 174: 305-320. DOI: 10.1016/j.freeradbiomed.2021.07.024.
41.Lee JE, Westrate LM, Wu H, et al. Multiple dynamin family members collaborate to drive mitochondrial division[J]. Nature, 2016, 540(7631): 139-143. DOI: 10.1038/nature20555.
42.Yang A, Guo L, Zhang Y, et al. MFN2-mediated mitochondrial fusion facilitates acute hypobaric hypoxia-induced cardiac dysfunction by increasing glucose catabolism and ROS production[J]. Biochim Biophys Acta Gen Subj, 2023, 1867(9): 130413. DOI: 10.1016/j.bbagen.2023.130413.
43.吴佳怡. 细胞凋亡研究进展[J]. 当代化工研究, 2018, (12): 190-192. [Wu JY. Research progress on cell apoptosis[J]. Modern Chemical Research, 2018, (12): 190-192.] DOI: 10.3969/j.issn.1672-8114.2018.12.108.
44.Zhang H, Bosch-Marce M, Shimoda LA, et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia[J]. J Biol Chem, 2023, 299(8): 105125. DOI: 10.1016/j.jbc.2023.105125.
45.Huan Y, Quan H, Jia B, et al. High-altitude cerebral hypoxia promotes mitochondrial dysfunction and apoptosis of mouse neurons[J]. Front Mol Neurosci, 2023, 16: 1216947. DOI: 10.3389/fnmol.2023.1216947.
46.Ma J, Wang C, Sun Y, et al. Comparative study of oral and intranasal puerarin for prevention of brain injury induced by acute high-altitude hypoxia[J]. Int J Pharm, 2020, 591: 120002. DOI: 10.1016/j.ijpharm.2020.120002.
47.Choudhary R, Kumar M, Katyal A. 12/15-lipoxygenase debilitates mitochondrial health in intermittent hypobaric hypoxia induced neuronal damage: an in vivo study[J]. Redox Biol, 2022, 49: 102228. DOI: 10.1016/j.redox.2021.102228.
48.景临林, 武柠子, 杨颖, 等. 黄芩素-7-甲醚对高原缺氧小鼠脑组织保护作用研究[J]. 天然产物研究与开发, 2018, 30(6): 1054-1060. [Jing LL, Wu NZ, Yang Y, et al. Protective effects of negletein against hypobaric hypoxia-induced brain damage in mice[J]. Natural Product Research and Development, 2018, 30(6): 1054-1060.] DOI: 10.16333/j.1001-6880.2018.6.022.
49.Prasad J, Baitharu I, Sharma AK, et al. Quercetin reverses hypobaric hypoxia-induced hippocampal neurodegeneration and improves memory function in the rat[J]. High Alt Med Biol, 2013, 14(4): 383-394. DOI: 10.1089/ham.2013.1014.
50.Zhang J, Zhao T, Zhang P, et al. Moslosooflavone protects against brain injury induced by hypobaric hypoxic via suppressing oxidative stress, neuroinflammation, energy metabolism disorder, and apoptosis[J]. J Pharm Pharmacol, 2024, 76(1): 44-56. DOI: 10.1093/jpp/rgad109.
51.刘睿, 邵瑾, 赵彤, 等. 荠苧黄酮通过抑制氧化应激和炎症改善高原缺氧诱导的小鼠脑组织损伤[J]. 天然产物研究与开发, 2020, 32(8): 1413-1418, 1378. [Liu R, Shao J, Zhao T, et al. Mosloflavone ameliorates high altitude-induced brain injury via inhibiting oxidative stress and inflammation[J]. Natural Product Research and Development, 2020, 32(8): 1413-1418, 1378.] DOI: 10.16333/j.1001-6880.2020.8.018.
52.邵瑾, 杨颖, 何蕾, 等. 6-羟基染料木素和6,8-二羟基染料木素的简便合成[J]. 合成化学, 2020, 28(11): 998-1002. [Shao J, Yang Y, He L, et al. Convergent synthesis of 6-hydroxygenistein and 6,8-dihydroxygenistein[J]. Chinese Journal of Synthetic Chemistry, 2020, 28(11): 998-1002.] DOI: 10.15952/j.cnki.cjsc.1005-1511.19159.
53.石志群. 6-羟基染料木素对高原缺氧诱导脑损伤的保护作用与机制研究[D]. 兰州: 甘肃中医药大学, 2023. DOI: 10.27026/d.cnki.ggszc.2023.000310.
54.Jing L, Shao J, Zhao T, et al. Protective effect of 5,6,7,8- trtrahydroxyflavone against acute hypobaric hypoxia induced-oxidative stress in mice[J]. Pak J Pharm Sci, 2021, 34(2): 513-519. https://pubmed.ncbi.nlm.nih.gov/34275824/.
55.Jing L, Wu N, Zhang J, et al. Protective effect of 5,6,7,8- tetrahydroxyflavone on high altitude cerebral edema in rats[J]. Eur J Pharmacol, 2022, 928: 175121. DOI: 10.1016/j.ejphar.2022.175121.
56.苗路伟, 赵彤, 高迎春, 等. 7-羟乙基白杨素对低压性缺氧大鼠运动性疲劳具有保护作用[J]. 浙江大学学报(医学版), 2021, 50(5): 575-581. [Miao LW, Zhao T, Gao YC, et al. Protective effects of 7-hydroxyethyl chrysin on rats with exercise-induced fatigue in hypobaric hypoxia environment[J]. Journal of Zhejiang University(Medical Sciences), 2021, 50(5): 575-581.] DOI: 10.3724/zdxbyxb-2021-0319.
57.石志群, 高迎春, 张冬梅, 等. 7-羟乙基白杨素对高原脑水肿的作用机制初探[J]. 药学实践与服务, 2022, 40(5): 399-402, 415. [Shi ZQ, Gao YC, Zhang DM, et al. A preliminary study on the mechanism of 7-HEC on high altitude cerebral edema[J]. Journal of Pharmaceutical Practice and Service, 2022, 40(5): 399-402, 415.] DOI: 10.12206/j.issn.2097-2024.202205090.
58.王小娟, 杨宝乐, 马川, 等. 7-羟乙基白杨素聚乳酸-羟基乙酸共聚物纳米粒的制备及体外释放评价[J]. 浙江大学学报(医学版), 2024, 53(1): 116-125. [Wang XJ, Yang BL, Ma C, et al. Preparation of copolymer 7-hydroxyethyl chrysin loaded PLGA nanoparticles and the in vitro release[J]. Journal of Zhejiang University (Medical Sciences), 2024, 53(1): 116-125.] DOI: 10.3724/zdxbyxb-2023-0233.
59.Tripathi A, Kumar B, Sagi S S K. Prophylactic efficacy of Quercetin in ameliorating the hypoxia induced vascular leakage in lungs of rats[J]. PLoS One, 2019, 14(6): e0219075. DOI: 10.1371/journal.pone.0219075.
60.Tripathi A, Kumar M, Kaur P, et al. Efficacy of quercetin as a potent sensitizer of β2-AR in combating the impairment of fluid clearance in lungs of rats under hypoxia[J]. Respir Physiol Neurobiol, 2020, 273: 103334. DOI: 10.1016/j.resp.2019.103334.
61.曹丽睿, 查玉杰, 何庆. 山柰酚对大鼠高原肺水肿的预防作用及机制研究[J]. 天津医科大学学报, 2022, 28(1): 58-64. [Cao LR, Zha YJ, He Q, et al. Preventive effect and mechanism of kaempferol on high altitude pulmonary edema in rats[J]. Journal of Tianjin Medical University, 2022, 28(1): 58-64.] https://www.cnki.com.cn/Article/CJFDTOTAL-TJYK202201013.htm.
62.Li N, Cheng Y, Jin T, et al. Kaempferol and ginsenoside Rg1 ameliorate acute hypobaric hypoxia induced lung injury based on network pharmacology analysis[J]. Toxicol Appl Pharmacol, 2023, 480: 116742. DOI: 10.1016/j.taap.2023.116742.
63.Pei C, Jia N, Wang Y, et al. Notoginsenoside R1 protects against hypobaric hypoxia-induced high-altitude pulmonary edema by inhibiting apoptosis via ERK1/2-P90rsk-BAD ignaling pathway[J]. Eur J Pharmacol, 2023, 959: 176065. DOI: 10.1016/j.ejphar.2023.176065.
64.邵瑾, 杨颖, 何蕾, 等. 黄芩素-7-甲醚对高原缺氧诱导小鼠心肌组织损伤的保护作用研究[J]. 解放军医药杂志, 2019, 31(6): 1-5. [Shao J, Yang Y, He L, et al. Protective effect of negletein on hypobaric hypoxia-induced myocardial tissue damage in mice[J]. Medical & Pharmaceutical Journal of Chinese People's Liberation Army, 2019, 31(6): 1-5.] DOI: 10.3969/j.issn.2095-140X.2019.06.001.
65.刘睿, 邵瑾, 赵彤, 等. 荠苧黄酮对低压低氧小鼠心肌组织损伤的改善作用与机制研究[J]. 中国新药杂志, 2021, 30(1): 55-61. [Rui L, Jin S, Tong Z, et al. Ameliorative effect and mechanism of mosloflavone on hypobaric hypoxia-induced heart damage in mice[J]. Chinese Journal of New Drugs, 2021, 30(1): 55-61.] DOI: 10.3969/j.issn.1003-3734.2021.01.010.
66.谭宏强. 8-羟基染料木素对高原缺氧小鼠心肌组织损伤的保护作用研究[D]. 兰州: 甘肃中医药大学,2023. DOI: 10.27026/d.cnki.ggszc.2023.000018.
67.Zhou YJ, Zhu JH, Lin FL. Acute kidney injury at high altitude[J]. High Alt Med Biol, 2013, 14(2): 183-185. DOI: 10.1089/ham.2012.1123.
68.Rathi V, Tiwari I, Kulshreshtha R, et al. Hypobaric hypoxia induced renal injury in rats: prophylactic amelioration by quercetin supplementation[J]. PLoS One, 2023, 18(2): e0279304. DOI: 10.1371/journal.pone.0279304.
69.Rathi V, Sagi SSK, Yadav AK, et al. Quercetin prophylaxis protects the kidneys by modulating the renin-angiotensin-aldosterone axis under acute hypobaric hypoxic stress[J]. Sci Rep, 2024, 14(1): 7617. DOI: 10.1038/s41598-024-58134-3.
70.Da Q, Xu M, Tian Y, et al. Preparation and characterization of mitochondrial-targeted nitronyl nitroxide loaded PLGA nanoparticles for brain injury induced by hypobaric hypoxia in mice[J]. Int J Nanomedicine, 2025, 20: 3999-4020. DOI: 10.2147/IJN.S507315.