Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 29,2025 No.8 Detail

Visual analysis for radiation protection of flavonoids based on CiteSpace

Published on Sep. 01, 2025Total Views: 190 times Total Downloads: 28 times Download Mobile

Author: LIU Yang 1 LI Tingyang 1 LI Yiliang 2, 3 LI Jiahui 1 TAO Ming 4 SHANG Haihua 2, 3 HOU Wenbin 2, 3

Affiliation: 1. College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China 2. Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin 300192, China 3. Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China 4. College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 117004 , China

Keywords: Flavonoids Radiation protection CiteSpace Visual analysis Bibliometrics Radioprotectants

DOI: 10.12173/j.issn.2097-4922.202504080

Reference: LIU Yang, LI Tingyang, LI Yiliang, LI Jiahui, TAO Ming, SHANG Haihua, HOU Wenbin. Visual analysis for radiation protection of flavonoids based on CiteSpace[J]. Yaoxue QianYan Zazhi, 2025, 29(8): 1393-1403. DOI: 10.12173/j.issn.2097-4922.202504080.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Objective  To analyze the current research status and trend of flavonoids in the field of radiation protection by bibliometric method, and provide reference for related research and development.

Methods  The Web of Science Core Collection (WOS-CC) and China Knowledge Network (CNKI) databases were searched for relevant literature, and the search time was set from the establishment of the databases to July 24, 2025. CiteSpace 6.1.R3 software was used to perform visual analysis of annual publication volume, country and institutional collaboration analysis, keyword co-occurrence, clustering and timeline. The English time partition was selected from January 2008 to December 2025, and the Chinese time partition was selected from January 2004 to December 2025.

Results  The initial search yielded 1,073 English and 1,033 Chinese articles, and finally a total of 309 English and 258 Chinese articles were included. The number of annual publications in this field showed a fluctuating upward trend, with India leading the way with 56 publications, and the centrality of Iranian research was even higher with 0.56. Among the research institutions, the Egyptian Knowledge Bank and Harbin Institute of Technology had the highest number of publications, both with 12 articles, and there was less inter-institutional cooperation. The keywords showed that the research hotspots focused on the antioxidant mechanism of flavonoids, the protection against UV and ionizing radiation, and the role of single compounds (e.g., quercetin, hawthorn flavonoids); the studies in Chinese and English have their own focuses, with the English research favoring the molecular mechanism and photoprotection technology, and the Chinese research focusing on the extraction of components and pharmacological effects.

Conclusion  The bibliometric analysis shows the pattern and trend of the research on radiation protection of flavonoids. Flavonoids have great potential for radiation protection research, and international cooperation should be strengthened in the future to explore the cross-cutting mechanisms and clinical translation..

Full-text
Please download the PDF version to read the full text: download
References

1.Johnke RM, Sattler JA, Allison RR. Radioprotective agents for radiation therapy: future trends[J]. Future Oncol, 2014, 10(15): 2345-2357. DOI: 10.2217/fon.14.175.

2.Li YN, Zhang WB, Zhang JH, et al. Radioprotective effect and other biological benefits associated with flavonoids[J]. Trop J Pharm Res, 2016, 15(5): 1099-1108. DOI: 10.4314/tjpr.v15i5.28.

3.Mashhadi Akbar Boojar M. An overview of the cellular mechanisms of flavonoids radioprotective effects[J]. Adv Pharm Bull, 2019, 10(1): 13-19. DOI: 10.15171/apb.2020.002.

4.Farhan M, Rizvi A, Aatif M, et al. Current understanding of flavonoids in cancer therapy and prevention[J]. Metabolites, 2023, 13(4): 481. DOI: 10.3390/metabo13040481.

5.Vicente O, Boscaiu M. Flavonoids: antioxidant compounds for plant defence and for a healthy human diet[J]. Not Bot Horti Agrobot Cluj-Napoca, 2018, 46(1): 14-21. DOI: 10.15835/nbha45210992.

6.de Araújo Andrade T, Heimfarth L, Dos Santos DM, et al. Hesperetin-based hydrogels protect the skin against UV radiation-induced damage[J]. AAPS PharmSciTech, 2022, 23(6): 170. DOI: 10.1208/s12249-022-02323-8.

7.Wu S, Tian C, Tu Z, et al. Protective effect of total flavonoids of Engelhardia roxburghiana Wall. leaves against radiation-induced intestinal injury in mice and its mechanism[J]. J Ethnopharmacol, 2023, 311: 116428. DOI: 10.1016/j.jep.2023.116428.

8.Qu X, Li Q, Zhang X, et al. Amentoflavone protects the hematopoietic system of mice against γ-irradiation[J]. Arc Pharm Res, 2019, 42(11): 1021-1029. DOI: 10.1007/s12272-019-01187-0.

9.Chen Y, Zhang J, Wu J, et al. A bibliometric and visual analysis of the use of ustekinumab in Crohn's disease using CiteSpace[J]. Front Pharmacol, 2024, 14: 1322319. DOI: 10.3389/fphar.2023.1322319.

10.Yao W, Peng X, Guan Y, et al. Thyroid nodules: emerging trends in detection and visualization basedon Citespace[J]. Endocr Metab Immune Disord Drug Targets, 2024, 24(1): 130-141. DOI: 10.2174/1871530323666230822143549.

11.冯悦颖, 陈天超, 柳馨怡, 等. 基于CiteSpace的国内外创伤后成长研究的可视化分析[J]. 护理研究, 2024, 38(15): 2746-2756. [Feng YY, Chen TC, Liu XY, et al. Bibliometric analysis of post-traumatic growth research in China and abroad based on CiteSpace[J]. Chinese Nursing Research, 2024, 38(15): 2746-2756.] DOI: 10.12102/j.issn.1009-6493.2024.15.020.

12.Lee K, Park JS, Kim YJ, et al. Differential expression of Prx I and II in mouse testis and their up-regulation by radiation[J]. Biochem Biophy Res Commun, 2002, 296(2): 337-342. DOI: 10.1016/S0006-291X(02)00801-X.

13.Fahlman BM, Krol ES. Inhibition of UVA and UVB radiation-induced lipid oxidation by quercetin[J]. J Agricul Food Chem, 2009, 57(12): 5301-5305. DOI: 10.1021/jf900344d.

14.Kale A, Pişkin Ö, Baş Y, et al. Neuroprotective effects of quercetin on radiation-induced brain injury in rats[J]. J Radiat Res, 2018, 59(4): 404-410. DOI: 10.1093/jrr/rry032.

15.Baran M, Yay A, Onder GO, et al. Hepatotoxicity and renal toxicity induced by radiation and the protective effect of quercetin in male albino rats[J]. Int J Radiat Biol, 2022, 98(9): 1473-1483. DOI: 10.1080/09553002.2022.2033339.

16.Qin M, Chen W, Cui J, et al. Protective efficacy of inhaled quercetin for radiation pneumonitis[J]. Exp Ther Med, 2017, 14(6): 5773-5778. DOI: 10.3892/etm.2017.5290.

17.Devipriya N, Sudheer AR, Srinivasan M, et al. Quercetin ameliorates gamma radiation-induced DNA damage and biochemical changes in human peripheral blood lymphocytes[J]. Mutat Res, 2008, 654(1): 1-7. DOI: 10.1016/j.mrgentox.2008.03.003.

18.Mo Q, Li S, You S, et al. Puerarin reduces oxidative damage and photoaging caused by UVA radiation in human fibroblasts by regulating Nrf2 and MAPK signaling pathways[J]. Nutrients, 2022, 14(22): 4724. DOI: 10.3390/nu14224724.

19.Liu C, Zhao Y, Xu X, et al. Puerarin reduces radiation-induced vascular endothelial cell damage via miR-34a/placental growth factor[J]. Dose Response, 2022, 20(1): 15593258211068649. DOI: 10.1177/15593258211068649.

20.郭娜, 孙云朝, 孙春霞, 等. 山楂黄酮通过抑制ROS/NLRP3信号通路对辐射损伤小鼠睾丸的保护作用[J]. 中成药, 2023, 45(1): 258-263. [Gou N, Sun YZ, Sun CX, et al. Protective effects of hawthorn flavonoids on the testis of radiation-damaged mice via inhibition of the ROS/NLRP3 signaling pathway[J]. Chinese Traditional Patent Medicine, 2023, 45(1): 258-263.] DOI: 10.3969/j.issn.1001-1528.2023.01.049.

21.胡琦, 王海燕, 陈泊宇, 等. 山楂黄酮对微波辐射大鼠肾脏损伤的治疗作用[J]. 吉林医药学院学报, 2016, 37(3): 175-177. [Hu Q, Wang HY, Chen BY, et al. Therapeutic effects of hawthorn flavonoids on kidney injury in microwave radiation rats[J]. Journal of Jilin Medical College, 2016, 37(3): 175-177.] DOI: 10.12173/j.issn.1004-5511.202302011.

22.Ojha H, Institute of Nuclear Medicine and Allied Sciences, Sharma K, et al. In-vitro evaluation of rutin and rutin hy drate as potential radiation countermeasure agents[J]. Int J Radiat Res, 2016, 14(1): 9-16. DOI: 10.18869/acadpub.ijrr.14.1.9.

23.Wang J, Li T, Feng J, et al. Kaempferol protects against gamma radiation-induced mortality and damage via inhibiting oxidative stress and modulating apoptotic molecules in vivo and vitro[J]. Environ Toxicol Pharmacol, 2018, 60: 128-137. DOI: 10.1016/j.etap.2018.04.014.

24.Tiwari P, Kumar A, Ali M, et al. Radioprotection of plasmid and cellular DNA and Swiss mice by silibinin[J]. Mutat Res, 2010, 695(1-2): 55-60. DOI: 10.1016/j.mrgentox.2009.11.007.

25.Sirerol JA, Feddi F, Mena S, et al. Topical treatment with pterostilbene, a natural phytoalexin, effectively protects hairless mice against UVB radiation-induced skin damage and carcinogenesis[J]. Free Radic Biol Med, 2015, 85: 1-11. DOI: 10.1016/j.freeradbiomed.2015.03.027.

26.Jagetia GC , Venkatesha VA , Koti RT. Naringin, a citrus flavonone, protects against radiation-induced chromosome damage in mouse bone marrow[J]. Mutagenesis, 2023, 18(4): 337-343. DOI: 10.1093/mutage/geg001.

27.Britto SM, Shanthakumari D, Agilan B, et al. Apigenin prevents ultraviolet-B radiation induced cyclobutane pyrimidine dimers formation in human dermal fibroblasts[J]. Mutat Res Genet Toxicol Environ Mutagen, 2017, 821: 28-35. DOI: 10.1016/j.mrgentox.2017.06.002.

28.Devi PU, Bisht KS, Vinitha M. A comparative study of radioprotection by Ocimum flavonoids and synthetic aminothiol protectors in the mouse[J]. British J Radiol, 1998, 71(847): 782-784. DOI: 10.1259/bjr.71.847.9771390.

29.Yoon GA, Park S. Antioxidant action of soy isoflavones on oxidative stress and antioxidant enzyme activities in exercised rats[J]. Nutri Res Practice, 2014, 8(6): 618-624. DOI: 10.4162/nrp.2014.8.6.618.

30.Benkovic V, Knezevic AH, Orsolic N, et al. Evaluation of radioprotective effects of propolis and its flavonoid constituents: in vitro study on human white blood cells[J]. Phytother Res, 2009, 23(8): 1159-1168. DOI: 10.1002/ptr.2774.

31.Ghali ENHK, Sandopu SK, Maurya DK, et al. Insights into the radioprotective efficacy of Pterocarpus santalinus L. aqueous extract[J]. Fitoterapia, 2024, 176: 105986. DOI: 10.1016/j.fitote.2024.105986.

32.葛永亮, 陶金华, 吴木军. 黄芩苷对辐射诱导的小鼠急性肺损伤保护作用机制研究[J].南京中医药大学学报, 2017, 33(6): 613-617. [Ge YL, Tao JH, Wu MJ. Effect of baicalin on radiation-induced acute lung injury in mice through antioxidant and anti-inflammatory properties[J]. Journal of Nanjing University of Traditional Chinese Medicine, 2017, 33(6): 613-617.] DOI: 10.14148/j.issn.1672-0482.2017.0613.

33.Lu J, Zhong Y, Lin Z, et al. Baicalin alleviates radiation-induced epithelial-mesenchymal transition of primary type II alveolar epithelial cells via TGF-β and ERK/GSK3β signaling pathways[J]. Biomed Pharmacother, 2017, 95: 1219-1224. DOI: 10.1016/j.biopha.2017.09.037.

Popular papers
Last 6 months