Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 29,2025 No.11 Detail

Exploring the anti-uterine fibroids mechanism of Rubia yunnanensis based on network pharmacology and molecular docking technology

Published on Dec. 01, 2025Total Views: 298 times Total Downloads: 50 times Download Mobile

Author: WANG Hong 1 LI Yanhua 2

Affiliation: 1. The Second Clinical College of Zhejiang Chinese Medicine University, Hangzhou 310005, China 2. Department of General Medicine, The Second Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou 310053, China

Keywords: Rubia yunnanensis Uterine fibroids Network pharmacology Molecular docking type Action mechanism Target Protein-protein interaction Signaling pathways

DOI: 10.12173/j.issn.2097-4922.202505052

Reference: WANG Hong, LI Yanhua. Exploring the anti-uterine fibroids mechanism of Rubia yunnanensis based on network pharmacology and molecular docking technology [J]. Yaoxue QianYan Zazhi, 2025, 29(11): 1801-1810. DOI:10.12173/j.issn.2097-4922.202505052.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Objective  To analyze the target pathway of Rubia yunnanensis in the treatment of uterine fibroids (UF) using network pharmacology, verify the stability of the binding of its active components to related targets through molecular docking technology, and prouid a basis for its clinical application.

Methods  The effective components of Rubia yunnanensis were collected and the relevant targets in the databases of TCMSP, SwissTargetPrediction and PubChem were obtained. The UF targets were collected in the GeneCards and DisGeNET databases, and the intersection genes were constructed on the Venny 2.1 platform. Protein-protein interaction network was constructed. GO and KEGG enrichment analyses were performed based on DAVID database. Finally, molecular docking of drug active ingredients and targets was performed using AutoDockTools software to verify its feasibility and rationality.

Results  A total of 44 drug active components, 602 drug targets, 1,076 targets for uterine fibroids, and 74 common drug-disease targets of Rubia yunnanensis were screened out. Enrichment analysis of the KEGG pathway yielded 89 signal pathways, and enrichment analysis of the GO pathway yielded 181 results. Among them, the pathways in cancer, prostate cancer, endocrine resistance, and epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) resistance, lipid and atherosclerosis signaling pathways were closely related to the treatment of UF. The results of molecular docking further verified that the core components and core targets of Rubia yunnanensis could bind effectively to exert therapeutic effects.

Conclusion  The main active components of Rubia yunnanensis may regulate multiple targets such as phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1), SRC, estrogen receptor 1 (ESR1), EGFR, and tumor necrosis factor (TNF), and regulate multiple signaling pathways including cancer signaling pathways, prostate cancer, endocrine antagonistic pathways, lipid and uterine fibroid signaling pathways. It can treat UF through anti-hormone, anti-tumor activity, anti-inflammatory, and anti-proliferative effects.

Full-text
Please download the PDF version to read the full text: download
References

1.Eggert SL, Huyck KL, Somasundaram P, et al. Genome-wide linkage and association analyses implicate FASN in predisposition to uterine leiomyomata[J]. Am J Human Gene, 2012, 91(4): 621-628. DOI: 10.1016/j.ajhg.2012.08.009.

2.Stewart EA, Laughlin-Tommaso SK, Catherino WH, et al. Uterine fibroids[J]. Nat Rev Dis Primers, 2016, 2: 16043. DOI: 10.1038/nrdp.2016.43.

3.Coyne KS, Soliman AM, Margolis MK, et al. Validation of the 4 week recall version of the uterine fibroid symptom and health-related quality of life (UFS-QOL) questionnaire[J]. Curr Med Res Opin, 2017, 33(2): 193-200. DOI: 10.1080/03007995.2016. 1248382.

4.Hervé F, Katty A, Isabelle Q, et al. Impact of uterine fibroids on quality of life: a national cross-sectional survey[J]. Eur J Obstet Gynecol Reprod Biol, 2018, 229: 32-37. DOI: 10.1016/j.ejogrb.2018.07.032.

5.Arip M, Yap VL, Rajagopal M, et al. Evidence-based management of uterine fibroids with botanical drugs-a review[J]. Front Pharmacol, 2022, 13: 878407. DOI: 10.3389/fphar. 2022.878407.

6.Jin Z, Wang XL. Traditional Chinese medicine and plant-derived natural products in regulating triglyceride metabolism: Mechanisms and therapeutic potential[J]. Pharmacol Res, 2024, 208: 107387. DOI: 10.1016/j.phrs.2024.107387.

7.Wang X, Xing X, Huang P, et al. A Chinese classical prescription Xuefu Zhuyu decoction in the treatment of coronary heart disease: an overview[J]. Heliyon, 2024, 10(7): e28919. DOI: 10.1016/j.heliyon.2024.e28919.

8.Yao Y, Chen H, Tan N. Cancer-cell-biomimetic nanoparticles systemically eliminate hypoxia tumors by synergistic chemotherapy and checkpoint blockade immunotherapy[J]. Acta Pharm Sin B, 2022, 12(4): 2103-2119. DOI: 10.1016/j.apsb.2021.10.010.

9.Yao Y, Feng L, Wang Z, et al. Programmed delivery of cyclopeptide RA-V and antisense oligonucleotides for combination therapy on hypoxic tumors and for therapeutic self-monitoring[J]. Biomater Sci, 2019, 8(1): 256-265. DOI: 10.1039/c9bm00905a.

10.Wang Z, Zhao S, Song L, et al. Natural cyclopeptide RA-V inhibits the NF-κB signaling pathway by targeting TAK1[J]. Cell Death Dis, 2018, 9(7): 715. DOI: 10.1038/s41419 -018-0743-2.

11.Leung HW, Wang Z, Yue GGL, et al. Cyclopeptide RA-V inhibits cell adhesion and invasion in both estrogen receptor positive and negative breast cancer cells via PI3K/AKT and NF-κB signaling pathways[J]. Biochim Biophys Acta, 2015, 1853(8): 1827-1840. DOI: 10.1016/j.bbamcr.2015.04.020.

12.Yang J, Yang T, Yan W, et al. TAK1 inhibition by natural cyclopeptide RA-V promotes apoptosis and inhibits protective autophagy in Kras-dependent non-small-cell lung carcinoma cells[J]. RSC Advances, 2018, 8(41): 23451-23458. DOI: 10.1039/d5ra90088c.

13.Ji X, Song L, Sheng L, et al. Cyclopeptide RA-V inhibits organ enlargement and tumorigenesis induced by YAP activation[J]. Cancers, 2018, 10(11): 449. DOI: 10.3390/cancers10110449.

14.段蓉, 李本发, 陈婉怡, 等. 彝药小红参对LPS诱导大鼠乳腺炎的作用机制及研究[J]. 云南中医中药杂志, 2024, 45(10): 76-80. [Duan R, Li BF, Chen WY, et al. Mechanism and study of Yi medicine Xiao Hongshen on LPS-induced mastitis in rats[J]. Yunnan Journal of Traditional Chinese Medicine and Materia Medica, 2024, 45(10): 76-80.] DOI: 10.3969/j.issn.1007-2349.2024.10.017.

15.王相, 任海波, 孙帅, 等. UPLC-MS/MS结合网络药理学及分子对接技术研究彝族药小红参治疗痛经的质量标志物[J]. 中药材, 2023, 46(7): 1701-1707. [Wang X, Ren HB, Sun S, et al. Quality markers of Yi medicine Rubia yunnanensis for treating dysmenorrhea based on UPLC-MS/MS combined with network pharmacology and molecular docking[J]. Journal of Chinese Medicinal Materials, 2023, 46(7): 1701-1707.] DOI: 10.13863/j.issn1001-4454.2023.07.029.

16.方文才, 王敏, 陈珍瑶, 等. 民族民间用药笔谈——小红参临床应用经验及验方[J]. 中国民族民间医药, 2025, 34(3): 117-118. [Fang WC, Wang M, Chen ZY, et al. Ethnic folk medication notes—clinical experience and prescriptions of Xiao-Hong-Shen (Rubia yunnanensis)[J]. Chinese Journal of Ethnomedicine and Ethnopharmacy, 2025, 34(3): 117-118.] DOI: 10.3969/j.issn. 1007-8517.2025.03.045.

17.冯光美. 佤族医药用药规律研究[D]. 昆明: 云南中医药大学, 2025. DOI: 10.27460/d. cnki. gyzyc.2022.000248.

18.杨宇. 小红参的临床运用[J]. 中国民族民间医药杂志, 2000, (2): 119-120. [Yang Y. Clinical application of Rubia yunnanensis[J]. Chinese Journal of Ethnomedicine and Ethnopharmacy, 2000, (2): 119-120.] https://www.cnki.com.cn/Article/CJFDTOTAL-MZMJ200002033.htm.

19.Wang J, Wang J, Li L, et al. RA-XII, a bicyclic hexapeptidic glucoside isolated from rubia yunnanensis diels, exerts antitumor activity by inhibiting protective autophagy and activating Akt-mTOR pathway in colorectal cancer cells[J]. J Ethnopharmacol, 2021, 266: 113438. DOI: 10.1016/j.jep.2020.113438.

20.Li L, Wang J, Feng L, et al. Rubioncolin C, a natural naphthohydroquinone dimer isolated from Rubia yunnanensis, inhibits the proliferation and metastasis by inducing ROS-mediated apoptotic and autophagic cell death in triple-negative breast cancer cells[J]. J Ethnopharmacol, 2021, 277: 114184. DOI: 10.1016/j.jep. 2021.114184.

21.任海波. 彝族药小红参化学成分分析及质量控制研究[D]. 石家庄: 河北中医药大学, 2025. DOI: 10.7666/d.D202501023.

22.Zeng GZ, Fan JT, Xu JJ, et al. Apoptosis induction and G2/M arrest of 2-methyl-1, 3,6-trihydroxy-9,10-anthraquinone from Rubia yunnanensis in human cervical cancer hela cells[J]. Pharmazie, 2013, 68(4): 293-299. DOI: 10.1691/ph.2013.3078.

23.Zhang C, Liao Y, Liu L, et al. A network pharmacology approach to investigate the active compounds and mechanisms of musk for ischemic stroke[J]. Evid Based Complement Alternat Med, 2020, 2020: 4063180. DOI: 10.1155/2020/4063180.

24.Mukhija M, Joshi BC, Bairy PS, et al. Lignans: a versatile source of anticancer drugs[J]. Beni-Suef Univ J Basic Appl Sci, 2022, 11(1): 76. DOI: 10.1186/s43088-022-00256-6.

25.Aehle E, Müller U, Eklund PC, et al. Lignans as food constituents with estrogen and antiestrogen activity[J]. Phytochemistry, 2011, 72(18): 2396-2405. DOI: 10.1016/j.phytochem. 2011.08.013.

26.Abid F, Saleem M, Muller CD, et al. Anti-proliferative and apoptosis-inducing activity of acacia modesta and opuntia monocantha extracts on HeLa cells[J]. Asian Pac J Cancer Prev, 2020, 21(10): 3125-3131. DOI: 10.1016/j.phytochem.2011.08.013.

27.Makker A, Goel MM, Mahdi AA, et al. PI3K/akt/mTOR signaling & its regulator tumour suppressor genes PTEN & LKB1 in human uterine leiomyomas[J]. Indian J Med Res, 2016, 143 (Supplement): S112-S119. DOI: 10.4103/0971-5916.191808.

28.Su Y, Zhu K, Wang J, et al. Advancing src kinase inhibition: from structural design to therapeutic innovation-a comprehensive review[J]. Eur J Med Chem, 2025, 287: 117369. DOI: 10.1016/j.ejmech.2025.117369.

29.Mortezaee FT, Tabatabaiefar MA, Chaleshtori MH, et al. Lack of association between ESR1 and CYP1A1 gene polymorphisms and susceptibility to uterine leiomyoma in female patients of iranian descent[J]. Cell J, 2014, 16(2): 225-230. DOI: 10.22074/cellj.2014.2550.

30.Michael M, Begum R, Chan GK, et al. Kindlin-1 regulates epidermal growth factor receptor signaling[J]. J Invest Dermatol, 2019, 139(2): 369-379. DOI: 10.1016/j.jid. 2018.08.020.

31.Protic O, Toti P, Islam MS, et al. Possible involvement of inflammatory/reparative processes in the development of uterine fibroids[J]. Cell Tissue Res, 2016, 364(2): 415-427. DOI: 10.1007/s00441-015-2324-3.

32.Su T, Li FY, Guan JJ, et al. Artemisinin and its derivatives prevent helicobacter pylori-induced gastric carcinogenesis via inhibition of NF-κB signaling[J]. Phytomedicine, 2019, 63: 152968. DOI: 10.1016/j.phymed. 2019.152968.

33.Shen J, Li P, Liu SS, et al. Traditional uses, ten-years research progress on phytochemistry and pharmacology, and clinical studies of the genus scutellaria[J]. J Ethnopharmacol, 2021, 265: 113198. DOI: 10.1016/j. jep.2020.113198.

34.Filindris T, Papakonstantinou E, Keramida M, et al. The effect of GnRH-a on the angiogenesis of endometriosis[J]. Hormones (Athens), 2024, 23(3): 509-515. DOI: 10.1007/s42000- 024-00559-6.

35.Sundström-Poromaa I, Comasco E. New pharmacological approaches to the management of premenstrual dysphoric disorder[J]. CNS Drugs, 2023, 37(5): 371-379. DOI: 10.1007/s40263- 023-01004-9.

Popular papers
Last 6 months