Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 29,2025 No.10 Detail

Research progress on extraction, characterization, component analysis and application of ginger-derived exosome-like nanoparticles

Published on Oct. 30, 2025Total Views: 19 times Total Downloads: 2 times Download Mobile

Author: MING Tingwen 1, 2 YU Guanbin 1 LIU Jingjian 1, 2 LIU Huimin 1, 3 CHEN Qinhua 4 ZHU Jun 1, 2, 3

Affiliation: 1. Department of Pharmacy, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan 442008, Hubei Province, China 2. Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442008, Hubei Province, China 3. Institute of Pharmaceutical Analysis and Screening, Hubei University of Medicine, Shiyan 442008, Hubei Province, China 4. Department of Pharmacy, Shenzhen Bao’an Authentic TCM Therapy Hospital, Shenzhen 518101, Guangdong Province, China

Keywords: Exosomes Ginger-derived exosome-like nanoparticles Extraction Characterization Pharmacological effects

DOI: 10.12173/j.issn.2097-4922.202507037

Reference: MING Tingwen, YU Guanbin, LIU Jingjian, LIU Huimin, CHEN Qinhua, ZHU Jun. Research progress on extraction, characterization, component analysis and application of ginger-derived exosome-like nanoparticles[J]. Yaoxue QianYan Zazhi, 2025, 29(10): 1777-1786. DOI: 10.12173/j.issn.2097-4922.202507037.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Exosomes are lipid bilamellar vesicles with a diameter of 30-150 nm, secreted from cells to the outside of cells. They play an important role in intercellular communication, contains proteins, lipids, nucleic acids and metabolites, and participates in various physiological and pathological processes in organisms. Plant-derived exosomes possess both nanoscale structure and natural pharmacological activity, and have been proven to exhibit anti-inflammatory, antiviral, anti-fibrotic, intestinal flora-regulating and anti-tumor effects. Ginger-derived exosome-like nanoparticles (GELNs) have become a research hotspot due to their abundant sources, high biocompatibility and unique pharmacological activities. This paper systematically reviews the extraction technology, characterization methods, component analysis and potential applications of GELNs, and explores the limitations and future directions of current research, to provide a reference for in-depth research and clinical translation of GELNs.

Full-text
Please download the PDF version to read the full text: download
References

1.Johnstone RM, Adam M, Hammond JR, et al. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes)[J]. J Biol Chem, 1987, 262(19): 9412-9420. https://pubmed.ncbi.nlm.nih.gov/3597417/.

2.Jeppesen DK, Fenix AM, Franklin JL, et al. Reassessment of exosome composition[J]. Cell, 2019, 177(2): 428-445.e18. DOI: 10.1016/j.cell.2019.02.029.

3.Sharma P, Mesci P, Carromeu C, et al. Exosomes regulate neurogenesis and circuit assembly[J]. Proc Natl Acad Sci U S A, 2019, 116(32): 16086-16094. DOI: 10.1073/pnas.1902513116.

4.Wang X, Shi T, Jiao Y, et al. Human umbilical mesenchymal stem cell-derived exosomes alleviate bone destruction and regulate bone immunity via the aryl hydrocarbon receptor to treat rheumatoid arthritis[J]. Int Immunopharmacol, 2024, 143(Pt2): 113340. DOI: 10.1016/j.intimp.2024.113340.

5.Chen X, Wang L, Cheng Q, et al. Multiple myeloma exosomal miRNAs suppress cGAS- STING antiviral immunity[J]. Biochim Biophys Acta Mol Basis Dis, 2024, 1870(8): 167457. DOI: 10.1016/j.bbadis.2024.167457.

6.Zhang Z, Zou Y, Song C, et al. Advances in the study of exosomes in cardiovascular diseases[J]. J Adv Res, 2024, 66: 133-153. DOI: 10.1016/j.jare.2023.12.014.

7.Dai Y, Yao Y, He Y, et al. Role of vascular endothelium and exosomes in cancer progression and therapy (review)[J]. Int J Oncol, 2025, 66(1): 6. DOI: 10.3892/ijo.2024.5712.

8.Wu S, Shang X, Guo M, et al. Exosomes in the diagnosis of neuropsychiatric diseases: a review[J]. Biology (Basel), 2024, 13(6): 387. DOI: 10.3390/biology13060387.

9.Steć A, Targońska M, Jaikishan S, et al. Incorporation of doxorubicin into plant-derived nanovesicles: process monitoring and activity assessment[J]. Drug Deliv, 2025, 32(1): 2439272. DOI: 10.1080/10717544.2024.2439272.

10.Yin W, Ma H, Qu Y, et al. Exosomes: the next-generation therapeutic platform for ischemic stroke[J]. Neural Regen Res, 2025, 20(5): 1221-1235. DOI: 10.4103/NRR. NRR-D-23- 02051.

11.An Q, van Bel AJ, Hückelhoven R. Do plant cells secrete exosomes derived from multivesicular bodies[J]. Plant Signal Behav, 2007, 2(1): 4-7. DOI: 10.4161/psb.2.1.3596.

12.Regente M, Corti-Monzon G, Maldonado AM, et al. Vesicular fractions of sunflower apoplastic fluids are associated with potential exosome marker proteins[J]. Febs Lett, 2009, 583(20): 3363-3366. DOI: 10.1016/j.febslet.2009.09.041.

13.Ju S, Mu J, Dokland T, et al. Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis[J]. Mol Ther, 2013, 21(7): 1345-1357. DOI: 10.1038/mt.2013.64.

14.Deng Z, Rong Y, Teng Y, et al. Broccoli-derived nanoparticle inhibits mouse colitis by activating dendritic cell AMP-activated protein kinase[J]. Mol Ther, 2017, 25(7): 1641-1654. DOI: 10.1016/j.ymthe.2017.01.025.

15.Mu J, Zhuang X, Wang Q, et al. Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles[J]. Mol Nutr Food Res, 2014, 58(7): 1561-1573. DOI: 10.1002/mnfr.201300729.

16.Seo K, Yoo JH, Kim J, et al. Ginseng-derived exosome-like nanovesicles extracted by sucrose gradient ultracentrifugation to inhibit osteoclast differentiation[J]. Nanoscale, 2023, 15(12): 5798-5808. DOI: 10.1039/d2nr07018a.

17.Xia X, Zhu J, Xu X, et al. Current progress of plant-derived exosome-like nanovesicles on the regulation of osteoporosis and osteoarthritis[J]. Ann Med, 2025, 57(1): 2549524. DOI: 10.1080/07853890.2025.2549524.

18.Teng Y, Xu F, Zhang X, et al. Plant-derived exosomal microRNAs inhibit lung inflammation induced by exosomes SARS-CoV-2 Nsp12[J]. Mol Ther, 2021, 29(8): 2424-2440. DOI: 10.1016/j.ymthe.2021.05.005.

19.Du J, Liang Z, Xu J, et al. Plant-derived phosphocholine facilitates cellular uptake of anti-pulmonary fibrotic HJT-sRNA-m7[J]. Sci China Life Sci, 2018, 48: 469-481. DOI: 10.1007/s11427-017-9026-7.

20.Lee R, Ko HJ, Kim K, et al. Anti-melanogenic effects of extracellular vesicles derived from plant leaves and stems in mouse melanoma cells and human healthy skin[J]. J Extracell Vesicles, 2020, 9(1): 1703480. DOI: 10.1080/20013078.2019.1703480.

21.Teng Y, Ren Y, Sayed M, et al. Plant-derived exosomal microRNAs shape the gut microbiota[J]. Cell Host Microbe, 2018, 24(5): 637-652. DOI: 10.1016/j.chom. 2018. 10.001.

22.Raimondo S, Naselli F, Fontana S, et al. Citrus limon-derived nanovesicles inhibit cancer cell proliferation and suppress CML xenograft growth by inducing TRAIL-mediated cell death[J]. Oncotarget, 2015, 6(23): 19514-19527. DOI: 10.18632/oncotarget.4004.

23.Zhang M, Zhao R, Wang D, et al. Ginger (Zingiber officinale Rosc.) and its bioactive components are potential resources for health beneficial agents[J]. Phytother Res, 2021, 35(2): 711-742. DOI: 10.1002/ptr.6858.

24.生姜的传说[J]. 中国中医药现代远程教育, 2016, 14(6): 98. [The Legend of Ginger[J]. Chinese Medicine Modern Distance Education of China, 2016, 14(6): 98.] https://www.cnki.com.cn/Article/CJFDTOTAL-ZZYY201606049.htm.

25.郭杰, 蒋姗, 王悦, 等. 经典名方中生姜的本草考证及其质量评价[J]. 中国实验方剂学杂志, 2022, 28(2): 27-37. [Guo J, Jiang S, Wang Y, et al. Herbal textual research on Zingiberis rhizoma recens in famous classical formulas and its quality evaluation[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2022, 28(2): 27-37.] DOI: 10.13422/j.cnki. syfjx.20211755.

26.项佳媚, 许利嘉, 肖伟, 等. 姜的研究进展[J]. 中国药学杂志, 2017, 52(5): 353-357. [Research progress in Zingiber officinale[J]. Chinese Pharmaceutical Journal, 2017, 52(5): 353-357.] DOI: 10.11669/cpj.2017.05.004.

27.张雪萍, 鲁雨晴, 张月倩, 等. 植物细胞外囊泡及其分析技术的进展[J]. 生物技术通报, 2023, 39(5): 32-43. [Zhang XP, Lu  YQ, Zhang YQ, et al. Advances in plant extracellular vesicles and analysis techaniques[J]. Biotechnology Bulletin, 2023, 39(5): 32-43.] DOI: 10.13560/j.cnki.biotech.bull.1985.2022-1106.

28.Anusha R, Ashin M, Sulochana P. Ginger exosome-like nanoparticles (GELNs) induced apoptosis, cell cycle arrest, and anti-metastatic effects in triple-negative breast cancer MDA-MB-231 cells[J]. Food Chem Toxicol, 2023, 182: 114102. DOI: 10.1016/j.fct. 2023.114102.

29.Kumar A, Ren Y, Sundaram K, et al. miR-375 prevents high-fat diet-induced insulin resistance and obesity by targeting the aryl hydrocarbon receptor and bacterial tryptophanase (tnaA) gene[J]. Theranostics, 2021, 11(9): 4061-4077. DOI: 10.7150/thno.52558.

30.Suresh AP, Kalarikkal SP, Pullareddy B, et al. Low pH-based method to increase the yield of plant-derived nanoparticles from fresh Ginger Rhizomes[J]. ACS Omega, 2021, 6(27): 17635-17641. DOI: 10.1021/acsomega.1c02162.

31.罗浚嘉. 生姜外泌体抗结直肠癌作用及机制研究[D]. 长沙: 中南大学, 2022. DOI: 10.27661/d.cnki.gzhnu.2022.003638.

32.Yin L, Yan L, Yu Q, et al. Characterization of the microRNA profile of ginger exosome-like nanoparticles and their anti-inflammatory effects in intestinal Caco-2 cells[J]. J Agr Food Chem, 2022, 70(15): 4725-4734. DOI: 10.1021/acs.jafc.1c07306.

33.Sall IM, Flaviu TA. Plant and mammalian-derived extracellular vesicles: a new therapeutic approach for the future[J]. Front Bioeng Biotechnol, 2023, 11: 1215650. DOI: 10.3389/fbioe.2023.1215650.

34.Steć A, Chodkowska M, Kasprzyk-Pochopień J, et al. Isolation of Citrus lemon extracellular vesicles: development and process control using capillary electrophoresis[J]. Food Chem, 2023, 424: 136333. DOI: 10.1016/j.foodchem.2023.136333.

35.Zhuang X, Deng ZB, Mu J, et al. Ginger-derived nanoparticles protect against alcohol- induced liver damage[J]. J Extracell Vesicles, 2015, 4: 28713. DOI: 10.3402/jev.v4.28713.

36.殷李芬. 生姜外泌体样纳米颗粒miRNAs谱分析及对肠细胞抗炎性作用机制研究[D]. 合肥: 合肥工业大学, 2022. DOI: 10.27101/d.cnki.ghfgu.2022.000891.

37.Yan L, Cao Y, Hou L, et al. Ginger exosome-like nanoparticle-derived miRNA therapeutics: a strategic inhibitor of intestinal inflammation[J]. J Adv Res, 2025, 69: 1-15. DOI: 10.1016/j.jare.2024.04.001.

38.Sundaram K, Miller DP, Kumar A, et al. Plant-derived exosomal nanoparticles inhibit pathogenicity of porphyromonas gingivalis[J]. iScience, 2019, 21: 308-327. DOI: 10.1016/j.isci.2019.10.032.

39.Zhang M, Viennois E, Prasad M, et al. Edible ginger-derived nanoparticles: a novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer[J]. Biomaterials, 2016, 101: 321-340. DOI: 10.1016/j.biomaterials. 2016.06.018.

40.Poy MN, Hausser J, Trajkovski M, et al. MiR-375 maintains normal pancreatic alpha- and beta-cell mass[J]. Proc Natl Acad Sci USA. 2009, 106(14): 5813-8. DOI: 10.1073/pnas.0810550106.

41.El Ouaamari A, Baroukh N, Martens GA, et al. miR-375 targets 3'-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells[J]. Diabetes, 2008, 57: 2708-2717. DOI: 10.2337/db07-1614.

42.Kumar A, Sundaram K, Teng Y, et al. Ginger nanoparticles mediated induction of Foxa2 prevents high-fat diet-induced insulin resistance[J]. Theranostics, 2022, 12(3): 1388-1403. DOI: 10.7150/thno.62514.

43.Chassaing B, Gewirtz AT. Gut microbiota, low-grade inflammation, and metabolic syndrome[J]. Toxicol Pathol, 2014, 42(1): 49-53. DOI: 10.1177/0192623313508481.

44.Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.

45.Riggio AI, Varley KE, Welm AL. The lingering mysteries of metastatic recurrence in breast cancer[J]. Brit J Cancer, 2021, 124(1): 13-26. DOI: 10.1038/s41416-020-01161-4.

46.Li Z, Wang H, Yin H, et al. Arrowtail RNA for ligand display on ginger exosome-like nanovesicles to systemic deliver siRNA for cancer suppression[J]. Sci Rep, 2018, 8(1): 14644. DOI: 10.1038/s41598-018-32953-7.

47.Chai L, Tian Z, Tang H, et al. Organic-inorganic nanocomposite hydrogels remarkably enhance skin regeneration in burn wound healing by targeting neurovascular network reconstruction[J]. ACS Appl Mater Interfaces, 2025, 17(34): 48044-48061. DOI: 10.1021/acsami. 5c11513.

Popular papers
Last 6 months