Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 26,2023 No.10 Detail

Prediction of aripiprazole blood concentration by GA-BP artificial neural network

Published on Nov. 17, 2023Total Views: 1081 times Total Downloads: 482 times Download Mobile

Author: Ze-Ping YANG 1, 2 Ting ZHAO 1 Ting-Ting WANG 1 Jie FENG 1 Hui-Lan ZHANG 1 Li SUN 1 Hong-Jian LI 1 Lu-Hai YU 1, 2

Affiliation: 1. Department of Pharmacy, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi 830001, China 2. School of Pharmacy, Shihezi University, Shihezi 832000, The Xinjiang Uygur Autonomous Region, China

Keywords: Genetic algorithm back propagation Artificial neural network Aripiprazole Dehydroaripiprazole Prediction of blood drug concentration

DOI: 10.12173/j.issn.1008-049X.202302193

Reference: Ze-Ping YANG, Ting ZHAO, Ting-Ting WANG, Jie FENG, Hui-Lan ZHANG, Li SUN, Hong-Jian LI, Lu-Hai YU.Prediction of aripiprazole blood concentration by GA-BP artificial neural network[J].Zhongguo Yaoshi Zazhi,2023,26(10):59-66.DOI: 10.12173/j.issn.1008-049X.202302193.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Objective  To construct a genetic algorithm back propagation (GA-BP) artificial neural network model for predicting the blood concentration of aripiprazole (APZ) and its metabolite dehydro-aripiprazole (DAPZ), and to provide a concentration prediction model for patients who need to adjust the dose of APZ or cannot monitor APZ blood concentration.

Methods  Blood drug concentration data were collected retrespectively from 174 patients who regularly took APZ in Xinjiang Uygur Autonomous Region People's Hospital from July 2021 to August 2022. Relevant variables were extracted, and GA-BP artificial neural network prediction model was constructed by Matlab R2018a programming software combined with deep learning network to predict blood drug concentration of APZ+DAPZ.

Results  The GA-BP artificial neural network prediction model showed that compared with the measured results, the average prediction error and the average absolute error of the 35 samples in the verification group were -0.092 6 and 0.689 5, respectively. The 35 prediction errors were all less than 15%, and the probability of less than 15% was 100%. The correlation coefficient between the predicted value and the measured value was 0.997, and the predicted result was ideal.

Conclusion  GA-BP artificial neural network prediction model can be used to predict the blood concentration of APZ+DAPZ and for individual drug administration of APZ.

Full-text
Please download the PDF version to read the full text: download
References

1.Tandon R, Keshavan MS, Nasrallah HA. Schizophrenia, "just the facts" what we know in 2008. 2. Epidemiology and etiology[J]. Schizophr Res, 2008, 102(1-3): 1-18. DOI: 10.1016/j.schres.2008.04.011.

2.吴金丽. 阿立哌唑的临床应用[J]. 医学信息, 2018, 31(14): 42-45. [Wu JL. Clinical application of aripiprazole[J]. Medical Information, 2018, 31(14): 42-45.] DOI: 10.3969/j.issn.1006-1959.2018.14.014.

3.Cuomo A, Goracci A, Fagiolini A. Aripiprazole use during pregnancy, peripartum and lactation. A systematic literature search and review to inform clinical practice[J]. J Affect Disord, 2018, 228: 229-237. DOI: 10.1016/j.jad.2017.12.021.

4.Fleishhacker WW. New developments in the pharmacotherapy of schizophrenia[J]. J Neural Tmnsm Suppl, 2003, (64): 105-117. DOI: 10.1007/978-3-7091-6020-6_7.

5.Kiss Á, Menus Á, Tóth K, et al. Phenoconversion of CYP2D6 by inhibitors modifies aripiprazole exposure[J]. Eur Arch Psychiatry Clin Neurosci, 2020, 270(1): 71-82. DOI: 10.1007/s00406-018-0975-2.

6.付真彦. 新疆地区汉族、维吾尔族、哈萨克族胆固醇吸收代谢关键基因的变异与功能[D]. 北京: 中国科学院大学, 2017.

7.张晨, 倪穗琴, 温预关, 等. 应用GA-BP人工神经网络预测丙戊酸钠血药浓度[J]. 今日药学, 2014, 24(1): 7-10. [Zhang C, Ni SQ, Wen YG, et al. Prediction of serum sodium valproate concentration with GA-BP artificial neural network model[J]. Pharmacy Today, 2014, 24(1): 7-10.] DOI: CNKI:SUN:YAXU.0.2014-01-006.

8.Hiemke C, Bergemann N, Clement HW, et al. Consensus guidelines for therapeutic drug monitoring in neuropsychopharmacology: update 2017[J]. Pharmacopsychiatry, 2018, 51(1-02): e1. DOI: 10.1055/s-0037-1600991.

9.Patteet L, Morrens M, Maudens KE, et al. Therapeutic drug monitoring of common antipsychotics[J]. Ther Drug Monit, 2012, 34(6): 629-651. DOI: 10.1097/FTD.0b013e3182708ec5.

10.Wang JS, Zhu HJ, Donovan JL, et al. Aripiprazole brain concentration is altered in P-glycoprotein deficient mice[J]. Schizophr Res, 2009, 110(1-3): 90-94. DOI: 10.1016/j.schres.2009.01.011.

11.Harrison TS, Perry CM. Aipiprazole: a review of its use in schizophrenia and schizoaffective disorder[J]. Drugs, 2004, 64(15): 1715-1736. DOI: 10.2165/00003495-200464150-00010.

12.Shastry CS, Shafeeque AA, Ashwathnarayana BJ. Effect of combination of aripiprazole with carbamazepine and fluvoxamine on liver functions in experimental animals[J]. Indian J Pharmacol, 2013, 45(2): 121-125. DOI: 10.4103/0253-7613.108280.

13.马雪, 李红健, 赵婷, 等. 利用GA-BP神经网络预测新疆癫痫患儿拉莫三嗪血药浓度[J]. 新疆医学, 2022, 52(7): 847-851. [Ma X, Li HJ, Zhao T, et al. Application of GA-BP neural network on prospective prediction about the serum concentration of lamotrigine in children with epilepsy in Xinjiang[J]. Xinjiang Medical Journal, 2022, 52(7): 847-851.] http://qikan.cqvip.com/Qikan/Article/Detail?id=00002EOKK77G7JP0MLDO2JP06NR.

14.陈明, 主编. MAT- LAB神经网络原理及实例的精细化解[M].北京: 清华大学出版社, 2013: 156-177.

15.Royston P, Parmar MK, Sylvester R. Construction and validation of a prognostic model across several studies, with an application in superficial bladder cancer[J]. Stat Med, 2004, 23(6): 907-926. DOI: 10.1002/sim.1691.

16.李琰, 瞿发林, 汪莉, 等. 阿立哌唑血清药物浓度/剂量比影响因素研究[J]. 中国药师, 2022, 25(3): 455-457. [Li Y, Qu FL, Wang L, et al. Study on the Influencing factors in serum drug concentration/dose ratio of aripiprazole[J]. China Pharmacist, 2022, 25(3): 455-457.] DOI: 10.19962/j.cnki.issn10 08-049X.2022.03.012.

17.Kang SH, Poynton MR, Kim KM, et al. Population pharmacokinetic and pharmacodynamic models of remifentanil in healthy volunteers using artificial neural network analysis[J]. Br J Clin Pharmacol, 2007, 64(1): 3-13. DOI: 10.1111/j.1365-2125.2007.02845.x.

18.Hussain AS, Yu XQ, Johnson RD. Application of neural computing in pharmaceutical product development[J]. Pharm Res, 1991, 8(10): 1248-1252. DOI: 10.1023/a:1015843527138.

19.Yamamura S, Kawada K, Takehira R, et al. Prediction of aminoglycoside response against methicillin-resistant Staphylococcus aureus infection in burn patients by artificial neural network modeling[J]. Biomed Pharmacother, 2008, 62(1): 53-58. DOI: 10.1016/j.biopha.2007.11.004.

20.赵婷, 李红健, 翁振群, 等. 基于人工神经网络的新疆维吾尔族癫痫患儿奥卡西平血清浓度预测研究[J]. 中国药学杂志, 2020, 55(16): 1376-1380. [Zhao T, Li HJ, Weng ZQ, et al. Prediction of serum concentration of oxasepine in Xinjiang Uygur children with epilepsy based on artificial neural network[J]. Chinese Pharmaceutical Journal, 2020, 55(16): 1376-1380.] DOI: 10.11669/cpj.2020.16.012.

21.王婷婷, 李红健, 贾莉, 等. 维吾尔族癫痫患儿奥卡西平活性代谢产物血药浓度监测分析[J]. 中国医院药学杂志, 2016, 36(8): 644-646. [Wang TT, Li HJ, Jia L, et al. Analysis of the influencing factors of the plasma concentration of oxcarbazepine active metabolite in Uygur children with epilepsy[J]. Chinese Journal of Hospital Pharmacy, 2016, 36(8): 644-646.] DOI: 10.13286/j.cnki.chinhosppharmacyj.2016.08.11.

22.Yao N, Huang S, Huang A, et al. Analysis of influencing factors on monohydroxylated derivative of oxcarbazepine  plasma concentration in children with epilepsy[J]. Eur J Clin Pharmacol, 2022, 78(10): 1667-1675. DOI: 10.1007/s00228-022-03373-4.

23.Jukic MM, Smith RL, Haslemo T, et al. Effect of CYP2D6 genotype on exposure and efficacy of risperidone and  aripiprazole: a retrospective, cohort study[J]. Lancet Psychiatry, 2019, 6(5): 418-426. DOI: 10.1016/S2215-0366(19)30088-4.

24.Hendset M, Hermann M, Lunde H, et al. Impact of the CYP2D6 genotype on steady-state serum concentrations of  aripiprazole and dehydroaripiprazole[J]. Eur J Clin Pharmacol, 2007, 63(12): 1147-1151. DOI: 10.1007/s00228-007-0373-6.

25.Zhang X, Xiang Q, Zhao X, et al. Association between aripiprazole pharmacokinetics and CYP2D6 phenotypes: a systematic review and meta-analysis[J]. J Clin Pharm Ther, 2019, 44(2): 163-173. DOI: 10.1111/jcpt.12780.

Popular papers
Last 6 months