Objective To investigate the effect of asiatic acid (AA) on the apoptosis of HT-22 cells induced by sevoflurane (SEVO) by regulating phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway.
Methods Different concentrations of AA (0, 5, 10, 15, 20, 30 μmol/L) were used to treat HT-22 cells induced by sevoflurane for 24 hours, and CCK-8 was used to detect HT-22 cell viability; HT-22 cells were divided into control group, sevoflurane (SEVO) group, AA low concentration (AA- L, 10 μmol/L) group, AA medium concentration (AA-M, 15 μmol/L) group, AA high concentration (AA-H, 20 μmol/ L) group, and AA high concentration+PI13K pathway inhibitor LY294002 (AA-H+LY294002, 20 μmol/ L AA+5 μmol/ L LY294002) group. Inverted microscopy was applied to observe changes of cell morphology, ELISA was applied to detect the levels of inflammatory factors TNF-α and IL-6, oxidative stress indicators SOD, GSH-Px, and MDA, ROS detection kit was applied to detect ROS levels, TUNEL kit was applied to detect HT- 22 apoptosis, JC-1 method was applied to detect mitochondrial membrane potential, ATP content detection kit was applied to detect ATP content, and Western blot was applied to detect the expressions of Bcl-2, Bax, Caspase-3, p-PI3K, PI3K, p-AKT, and AKT proteins.
Results Compared with 0 μmol/L, the activity of HT-22 cells treated with 5-30 μmol/ L AA increased in a concentration-dependent manner (P<0.05), concentrations of 10 μmol/ L, 15 μmol/L, and 20 μmol/L of AA were selected for subsequent experiments. Compared with the SEVO group, the levels of TNF-α, IL-6, MDA, ROS, cell apoptosis rate, and expressions of Bax and Caspase-3 proteins in the AA-L, AA-M, and AA-H groups were reduced, the levels of SOD and GSH-Px, red/green JC-1 fluorescence ratio, content of ATP, the expression of Bcl-2 protein, the phosphorylation levels of PI3K and AKT were increased (P<0.05), and were concentration dependent. LY294002 was able to reverse the protective effect of AA on HT-22 cell damage induced by sevoflurane (P<0.05).
Conclusion AA protects HT-22 cells from damage induced by sevoflurane by activating the PI3K/AKT signaling pathway, which provides a theoretical reference for the development of novel drugs to reduce sevofluran-induced neurotoxicity.
1.Xu F, Han L, Wang Y, et al. Prolonged anesthesia induces neuroinflammation and complement-mediated microglial synaptic elimination involved in neurocognitive dysfunction and anxiety-like behaviors[J]. BMC Med, 2023, 21(1): 7. DOI: 10.1186/s12916-022-02705-6.
2.何洁, 李秀泽, 文竹. 积雪草酸调节cAMP/PKA信号通路对罗哌卡因诱导新生大鼠神经毒性的影响 [J]. 中国优生与遗传杂志, 2023, 31(8): 1575-1580. [He J, Li XZ, Wen Z. The effect of oxalic acid regulation of cAMP/PKA signaling pathway on ropivacaine induced neurotoxicity in neonatal rats[J]. Chinese Journal of Birth Health & Heredity, 2023, 31(8): 1575-1580.] DOI: 10.13404/j.cnki.cjbhh.2023.08.003.
3.宋阳, 赵长祺, 高扬, 等. 积雪草酸调节cAMP/CREB/BDNF信号通路对七氟醚诱导的新生大鼠神经毒性的影响[J]. 中国优生与遗传杂志, 2023, 31(6): 1145-1151. [Song Y, Zhao CQ, Gao Y, et al. The effect of oxalic acid regulation of cAMP/CREB/BDNF signaling pathway on sevoflurane induced neurotoxicity in neonatal rats[J]. Chinese Journal of Birth Health & Heredity, 2023, 31(6): 1145-1151]. DOI: 10.13404/j.cnki.cjbhh.2023.06.024.
4.Wang N, Wang M. Dexmedetomidine suppresses sevoflurane anesthesia-induced neuroinflammation through activation of the PI3K/Akt/mTOR pathway[J]. BMC Anesthesiol, 2019, 19(1): 134. DOI: 10.1186/s12871-019-0808-5.
5.龚涛武, 郑雪, 赵鹏程, 等. 七氟醚对幼年大鼠学习记忆能力及PI3K/AKT信号通路的影响[J]. 中国儿童保健杂志, 2018, 26(10): 1084-1087. [Gong TW, Zheng X, Zhao PC, et al. Effects of sevoflurane on learning-memory and PI3K/AKT signaling pathway in juvenile rats[J]. Chinese Journal of Child Health Care, 2018, 26(10): 1084-1087.] DOI: 10.11852/zgetbjzz2018-26-10-11.
6.Yu D, Zhu Y, Cui C, et al. Midazolam prevents sevoflurane-induced death in hippocampal neurons[J]. Tissue Cell, 2019, 58: 1-7. DOI: 10.1016/j.tice.2019. 03.001.
7.Wang H, Chen M, Gao Z, et al. Recombinant human erythropoietin protects long-term cultured ageing primary nerve cells by upregulating the PI3K/Akt pathway[J]. Neuroreport, 2022, 33(4): 186-198. DOI: 10.1097/WNR. 0000000000001768.
8.Lee JR, Joseph B, Hofacer RD, et al. Effect of dexmedetomidine on sevoflurane-induced neurodegeneration in neonatal rats[J]. Br J Anaesth, 2021, 126(5): 1009-1021. DOI: 10.1016/j.bja.2021.01.033.
9.Auditeau E, Chassagne F, Bourdy G, et al. Herbal medicine for epilepsy seizures in Asia, Africa and Latin America: a systematic review[J]. J Ethnopharmacol, 2019, 234(1): 119-153. DOI: 10.1016/j.jep.2018.12.049.
10.郑明慧, 白建强. 基于LKB1/AMPK信号通路探究金雀异黄酮对癫痫大鼠海马神经元凋亡和自噬的影响 [J]. 中国药师, 2022, 25(11): 1904-1910. [Zheng MH, Bai JQ. Impacts of genistein on the apoptosis and autophagy of hippocampal neurons in epileptic rats based on LKB1/AMPK signaling pathway[J]. China Pharmacist, 2022, 25(11): 1904-1910.] DOI: 10.19962/j.cnki.issn1008-049X. 2022.11.006.
11.Ding L, Liu T, Ma J. Neuroprotective mechanisms of Asiatic acid[J]. Heliyon, 2023, 9(5): e15853. DOI: 10.1016/j.heliyon.2023.e15853.
12.杨明, 李鲲鹏, 宋书田, 等. 重组人脑利钠肽调控丝裂原活化蛋白激酶信号通路减轻心肌缺血再灌注损伤的作用及机制[J]. 华西医学, 2022, 37(10): 1538-1544. [Yang M, Li KP, Song ST, et al. Effect and mechanism of recombinant human brain natriuretic peptide in alleviating myocardial ischemia-reperfusion injury by regulating mitogen activated protein kinase pathway[J]. West China Medical Journal, 2022, 37(10): 1538-1544.] DOI: 10.7507/ 1002-0179.202109098.
13.陈道鸿, 倪夕秀, 周子扬, 等. 针刺治疗肿瘤患者相关认知功能障碍的Meta分析[J]. 中国循证医学杂志, 2022, 22(11): 1265-1271. [Chen DH, Ni XX, Zhou ZY, et al. Meta-analysis of cognitive impairment related to acupuncture treatment in tumor patients[J]. Chinese Journal of Evidence-Based Medicine, 2022, 22(11): 1265-1271.] DOI: 10.7507/1672-2531.202204143.
14.Zhu Z, Ma L. Sevoflurane induces inflammation in primary hippocampal neurons by regulating Hoxa5/Gm5106/miR-27b-3p positive feedback loop[J]. Bioengineered, 2021, 12(2): 12215-12226. DOI: 10.1080/21655979.2021.2005927.
15.张君, 李永乐, 刘洁. MST1在帕金森细胞模型中的作用及其机制研究[J]. 药物流行病学杂志, 2023, 32(6): 655-661. [Zhang J, Li YL, Liu J. The role and mechanism of MST1 in Parkinson's cell model[J]. Chinese Journal of Pharmacoepidemiology, 2023, 32(6): 655-661.] DOI: 10.19960/j.issn.1005-0698.202306007.
16.Zhang H, Yan L. Solasonine relieves sevoflurane-induced neurotoxicity via activating the AMP-activated protein kinase/FoxO3a pathway[J]. Hum Exp Toxicol, 2022, 41: 9603271211069984. DOI: 10.1177/ 09603271211069984.
17.Yi C, Song M, Sun L, et al. Asiatic acid alleviates myocardial ischemia-reperfusion injury by inhibiting the ROS-mediated mitochondria-dependent apoptosis pathway[J]. Oxid Med Cell Longev, 2022, 2022: 3267450. DOI: 10.1155/2022/3267450.
18.杨淑银, 岳二丽, 郭留云, 等. miR-222-3p对口腔鳞状细胞癌CAL-27细胞增殖、凋亡和侵袭的影响 [J]. 医学新知, 2023, 33(5): 343-349. [Yang SY, Yue EL, Guo LY, et al. Effects of miR-222-3p on proliferation, apoptosis and invasion of oral squamous cell carcinoma CAL-27 cells[J]. Yixve Xinzhi Zazhi, 2023, 33(5): 343-349.] DOI: 10.12173/j.issn.1004-5511.202302031.
19.Zhou X, Lu D, Li WD, et al. Sevoflurane affects oxidative stress and alters apoptosis status in children and cultured neural stem cells[J]. Neurotox Res, 2018, 33(1): 790-800. DOI: 10.1007/s12640-017-9827-5.
20.Qu Y, Li H, Shi C, et al. lncRNAs are involved in sevoflurane anesthesia-related brain function modulation through affecting mitochondrial function and aging process[J]. Biomed Res Int, 2020, 2020: 8841511. DOI: 10.1155/2020/8841511.
21.Chen D, Zhang XY, Sun J, et al. Asiatic acid protects dopaminergic neurons from neuroinflammation by suppressing mitochondrial ros production[J]. Biomol Ther (Seoul), 2019, 27(5): 442-449. DOI: 10.4062/biomolther. 2018.188.
22.Lu CW, Lin TY, Pan TL, et al. Asiatic acid prevents cognitive deficits by inhibiting calpain activation and preserving synaptic and mitochondrial function in rats with kainic acid-induced seizure[J]. Biomedicines, 2021, 9(3): 284. DOI: 10.3390/biomedicines9030284.
23.Urbani C, Mattiello A, Ferri G, et al. PCB153 reduces apoptosis in primary cultures of murine pituitary cells through the activation of NF-κB mediated by PI3K/Akt[J]. Mol Cell Endocrinol, 2021, 520: 111090. DOI: 10.1016/j.mce.2020.111090.
24.Wang N, Wang M. Dexmedetomidine suppresses sevoflurane anesthesia-induced neuroinflammation through activation of the PI3K/Akt/mTOR pathway[J]. BMC Anesthesiol, 2019, 19(1): 134. DOI: 10.1186/s12871-019-0808-5.
25.Cai M, Gao X, Yu S. Tripartite motif 72 inhibits apoptosis and mitochondrial dysfunction in neural stem cells induced by anesthetic sevoflurane by activating PI3K/AKT pathway[J]. Chin J Physiol, 2023, 66(1): 36-42. DOI: 10.4103/cjop.CJOP-D-22-00082.
26.Zhang Y, Huang N, Chen M, et al. Procyanidin protects against 6-hydroxydopamine-induced dopaminergic neuron damage via the regulation of the PI3K/Akt signalling pathway[J]. Biomed Pharmacother, 2019, 114: 108789. DOI: 10.1016/j.biopha.2019.108789.