Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 27,2024 No.8 Detail

Mechanism of "Astragalus-Leech" medicine pair for treatment of cerebral ischemia-reperfusion injury by regulating ferroptosis

Published on Sep. 04, 2024Total Views: 1377 times Total Downloads: 389 times Download Mobile

Author: YANG Zhiqian 1, 2 JIANG Jie 1, 2 LIU Wei 1, 2 WANG Jingju 1, 2 YANG Hong 1, 2

Affiliation: 1. Medical Experimental Center, China Academy of Chinese Medical Sciences, Beijing 100700, China 2. Beijing Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Major Diseases, Beijing 100700, China

Keywords: Astragalus Leech Network pharmacology Molecular docking Cerebral ischemia-reperfusion injury Ferroptosis Oxidative stress Inflammation Mechanism

DOI: 10.12173/j.issn.1008-049X.202401048

Reference: YANG Zhiqian, JIANG Jie, LIU Wei, WANG Jingju, YANG Hong.Mechanism of "Astragalus-Leech" medicine pair for treatment of cerebral ischemia-reperfusion injury by regulating ferroptosis[J].Zhongguo Yaoshi Zazhi,2024, 27(8):1273-1285.DOI: 10.12173/j.issn.1008-049X.202401048.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Objective  "Astragalus-Leech" medicine pair can reduce cerebral ischemia-reperfusion injury (CIRI), but its mechanism of action is not yet clear. Ferroptosis is a new target of CIRI. In this paper, the mechanism of  the "Astragalus-Leech" medicine pair on regulating ferroptosis in the treatment of CIRI was investigated using the network pharmacology approach.

Methods  The active ingredients and targets of Astragalus-Leech were obtained by searching databases, such as PubChem, SwissTargetPrediction, Batman-TCM, UniProt, TCMSP and other databases, respectively; the CIRI-related targets were collected by searching GeneCards database; the Venny online tool was used to obtain the common targets of "Astragalus-Leech" medicine pairs for active ingredients and CIRI. Cytoscape software was used to construct a network of interrelationships between the active ingredients, disease and predicted targets of the "Astragalus-Leech" medicine pair, the protein interaction network was visualized, and CytoHubba plug-in was used to calculate the core targets. The GO analysis and KEGG analysis of the targets of "Astragalus-Leech" in the treatment of CIRI were performed using R language software. Using FerrDb database, the genes related to the regulation of ferroptosis were obtained, and the common genes among the active ingredients, CIRI and ferroptosis in the "Astragalus-Leech" medicine pair were analyzed to investigate their relationship and make predictions. AutoDockTools 1.5.7 and other softwares were used to verify the molecular docking between the active ingredients and key targets.

Results  Through searching the databases, 28 active ingredients of "Astragalus-Leech" medicine pair, 680 predicted gene targets of the drug pair, 1 513 targets related to CIRI, 253 common targets of drug pair-disease, 259 targets related to ferroptosis were obtained. 28 potential targets, including PIK3CA, RELA, MAPK1, MAPK8, PTGS2, STAT3, SRC, NOS2, etc. on the regulation of ferroptosis and intervention in CIRI, and 279 signaling pathways including PI3K-Akt, Ras, TNF, MAPK, and HIF-1 were obtained through related prediction. Molecular docking showed that there was an interaction between the key components of the drug pair and the core targets. The "Astragalus-Leech" medicine pair may intervene in the development of CIRI by regulating ferroptosis and exert its therapeutic effects.

Conclusion  Using network pharmacology methods, the potential targets and related pathways of "Astragalus-Leech" on the active ingredients by regulating ferroptosis against CIRI were analyzed, suggesting that "Astragalus-Leech" may play its role in anti-CIRI through oxidative stress and anti-inflammatory pathways to regulate ferroptosis pathway, and provide a basis for further cell and animal experiments.

Full-text
Please download the PDF version to read the full text: download
References

1.李兆珍, 张丹参. 脑缺血再灌注损伤相关机制的研究进展[J]. 神经药理学报, 2020, 10(6): 60-63. [Li ZZ, Zhang DS. Research progress on related mechanisms of cerebral ischemia-reperfusion injury[J]. Journal of Hebei North University (Medical Edition) , 2020, 10(6): 60-63.] DOI: 10.3969/j.issn.2095-1396.2020.06.011.

2.任靓明, 田红旗. 炎症因子及其抑制剂对脑缺血再灌注损伤作用的研究进展[J]. 中国医药导报, 2021, 18(12): 61-64. [Ren JM, Tian HQ. Research progress of inflammatory factors and their inhibitors on cerebral ischemia-reperfusion injury[J]. China Medical Herald, 2021, 18(12): 61-64.] https://www.cnki.com.cn/Article/CJFDTotal-YYCY202112016.htm.

3.Yuan H, Pratte J, Giardina C. Ferroptosis and its potential as a therapeutic target[J]. Biochemical Pharmacology, 2021, 186: 114486. DOI: 10.1016/j.bcp.2021.114486.

4.胡淼, 门运政, 陈蕾, 等. 右美托咪定通过抑制铁死亡发挥对小鼠脑缺血再灌注损伤的保护作用[J]. 中南大学学报(医学版), 2022, 47(5): 600-609. [Hu M, Men YZ, Chen L, et al. Dexmedetomidine exerts its protective effect on cerebral ischemia reperfusion injury in mice by inhibiting ferroptosis[J]. Journal of Central South University (Medical Science), 2022, 47(5): 600-609.] DOI: 10.11817/j.issn.1672-7347.2022.210443.

5.She X, Lan B, Tian H, et al. Cross talk between ferroptosis and cerebral ischemia[J]. Front Neurosci, 2020, 14: 776. DOI: 10.3389/fnins.2020.00776.

6.钟菊迎, 刘钊, 李晶哲, 等. 黄芪水蛭对实验性脑缺血大鼠的改善作用研究[J]. 山西医药杂志, 2015, 44(4): 380-382. [Zhong JY, Liu Z, Li JZ, et al. Effect of Astragalus membranous and leech on experimental cerebral ischemia of rat[J]. Shanxi Medical Journal, 2015, 44(4): 308-382]. https://www.cnki.com.cn/article/cjfdtotal-sxyy201504004.htm.

7.王琳, 聂容荣, 秦凤玲, 等. 中西医结合治疗气虚血瘀型脑梗死恢复期患者的临床观察[J]. 世界中医药, 2019, 14(6): 1490-1492, 1497. [Wang L, Nie RR, Qin FL, et al. Clinical observation on combined treatment of traditional chinese and western medicine in convalescent stage of cerebral infarction of Qi deficiency and blood stasis syndrome[J]. World Chinese Medicine, 2019, 14(6): 1490-1492, 1497.] DOI: 10.3969/j.issn. 1673-7202.2019.06.028.

8.谢慧, 赵小君, 张玉箫, 等. 黄芪介导PGC-1α/Nrf2通路对年龄相关听力损失保护作用的研究[J]. 中国中医基础医学杂志, 2022, 28(8): 1249-1253. [Xie H, Zhao XJ, Zhang YX, et al. Research of protective effect of astragalus mediated PGC-1α/Nrf2 pathway on age related hearing loss[J]. Chinese Journal of Basic Medicine in Traditional Chinese Medicine, 2022, 28(8): 1249-1253.] DOI: 10.19945/j.cnki.issn.1006-3250.2022.08.004.

9.姜秋, 王玲娜, 刘谦, 等. 水蛭的炮制历史沿革、化学成分及药理作用研究进展[J]. 中国中药杂志, 2022, 47(21): 5806-5816. [Jiang Q, Wang LN, Liu Q, et al. Research progress on processing history evolution, chemical constituents, and pharmacological effects of Hirudo[J]. China Journal of Chinese Materia Medica, 2022, 47(21): 5806-5816.] DOI: 10.19540/j.cnki.cjcmm. 20220411.201.

10.周成浩. 蚂蟥水提物抗血栓作用及激活Nrf2抑制静脉血栓的机制研究[D]. 广州: 广州中医药大学, 2018. DOI: 10.27044/d.cnki.ggzzu.2018.000237.

11.Zhao Y, Zhang X, Chen X, et al. Neuronal injuries in cerebral infarction and ischemic stroke: From mechanisms to treatment (Review)[J]. Int J Mol Med, 2022, 49(2): 15. DOI: 10.3892/ijmm.2021.5070.

12.连妍洁, 刘思娜, 刘红旭, 等. 基于数据挖掘分析含水蛭中成药的配伍规律[J]. 世界中医药, 2022, 17(4): 505-511. [Lian YJ, Liu SN, Liu HX, et al. Compatibility regularity of chinese patent medicine containing Hirudo based on data mining[J]. World Chinese Medicine, 2022, 17(4): 505-511.] DOI: 10.3969/j.issn.1673- 7202.2022.04.012.

13.Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072. DOI: 10.1016/j.cell.2012. 03.042.

14.曹珍珍, 赵迎雪, 覃虹倩, 等. 铁死亡代谢通路研究进展及在急性肺损伤中的作用[J]. 中国呼吸与危重监护杂志, 2023, 22(3): 214-217. [Cao ZZ, Zhao YX, Tan HQ, et al. Research progress on ferroptosis metabolic pathway and its role in acute lung injury[J]. Chinese Journal of Respiratory and Critical Care Medicine, 2023, 22(3): 214-217.] DOI: 10.7507/1671-6205.202204057.

15.Jin Y, Zhuang Y, Liu M, et al. Inhibiting ferroptosis: A novel approach for stroke therapeutics[J]. Drug Discov Today, 2021, 26(4):916-930. DOI: 10.1016/j.drudis. 2020.12.020.

16.Yan HF, Tuo QZ, Yin QZ, Lei P. The pathological role of ferroptosis in ischemia/reperfusion-related injury[J]. Zool Res, 2020, 41(3):220-230. DOI: 10.24272/j.issn.2095- 8137.2020.042.

17.张宇, 孙文爽, 赵建宁.等. 铁死亡与氧化应激的关系及其在运动系统疾病中的研究进展[J]. 医学研究生学报, 2020, 33(4): 438-442. [Zhang Y, Sun WS, Zhao JN, et al. Relationship between ferroptosis and oxidative stress and its research progress in locomotor diseases[J]. Journal of Medical Research & Combat Trauma Care, 2020, 33(4): 438-442.] DOI: 10.16571/j.cnki.1008-8199.2020.04.019.

18.杨柳. 组蛋白H3K9乙酰化修饰通过调控Pik3ca转录参与阿霉素诱导的H9c2细胞凋亡[D]. 沈阳: 中国医科大学, 2021. DOI: 10.27652/d.cnki.gzyku.2021.000868.

19.李颖慧. SRC-1调控PI3K/AKT信号通路介导突触可塑性改善认知障碍的研究[D]. 四川南充: 川北医学院, 2021. DOI: 10.27755/d.cnki.gcbyx.2021.000090.

20.马春伟, 张海鸿. 氧化应激在脊髓损伤中的作用及机制研究进展[J]. 医学新知, 2024, 34(3): 339-346. [Ma CW, Zhang HH. Research progress on the role and mechanism of oxidative stress in spinal cord injury[J]. Yixue Xinzhi Zazhi, 2024, 34(03): 339-346.] DOI: 10. 12173/j.issn.1004-5511.202312102.

21.Hirayama Y, Koizumi S. Hypoxia-independent mechanisms of HIF-1α expression in astrocytes after ischemic preconditioning[J]. Glia. 2017, 65(3): 523-530. DOI: 10.1002/glia.23109.

22.郭常法. 缺氧通过PI3K/AKT/HIF-1α轴上调GPX4增强胶质母细胞瘤对铁死亡抵抗的机制研究[D]. 济南: 山东大学, 2022. DOI: 10.27272/d.cnki.gshdu.2022.001164.

23.Tian R, Wu B, Fu C, et al. miR-137 prevents inflammatory response, oxidative stress, neuronal injury and cognitive impairment via blockade of Src-mediated MAPK signaling pathway in ischemic stroke[J]. Aging (Albany NY), 2020, 12(11): 10873-10895. DOI: 10.18632/aging.103301.

24.毕雅维. P22phox通过调控RAS/ERK/HIF-1α通路在胰腺导管腺癌中的作用及机制研究[D]. 上海: 中国人民解放军海军军医大学, 2019. https://cdmd.cnki.com.cn/Article/CDMD-91020-1019123186.htm.

25.杨玲. DEHP通过p38α/p53通路和脂质ROS形成反馈循环引起铁死亡的机制研究[D]. 辽宁大连: 大连医科大学, 2022. DOI: 10.26994/d.cnki.gdlyu.2022.000300.

26.李姿毅, 夏源, 王军义. 黄芪甲苷抗氧化应激分子机制的研究进展[J]. 广东药科大学学报, 2022, 38(4): 118-122. [Li ZY, Xia Y, Wang JY. Progress of the antioxidant molecular mechanism of astragaloside Ⅳ[J]. Journal of Guangdong Pharmaceutical University, 2022, 38(4): 118-122.] DOI: 10.16809/j.cnki.2096-3653.2022041101.

27.Zhou Q, Meng G, Teng F, et al. Effects of astragalus polysaccharide on apoptosis of myocardial microvascular endothelial cells in rats undergoing hypoxia/reoxygenation by mediation of the PI3K/Akt/eNOS signaling pathway[J]. J Cell Biochem, 2018, 119(1): 806-816. DOI: 10.1002/jcb.26243.

28.黎晨, 尤培蒙, 王晨曦, 等. 黄芪多糖抗氧化作用的分子机制研究进展[J]. 西北民族大学学报(自然科学版), 2019, 40(4): 78-82. [Li C, You PM, Wang CX, et al. Molecular mechanism and research progress of antioxidant effect of astragalus polysaccharide[J]. Journal of Northwest Minzu University (Natural Science Edition), 2019, 40(4): 78-82.] DOI: 10.14084/j.cnki.cn62-1188/n.2019.04.014.

29.Jiang L, Kon N, Li T, et al. Ferroptosis as a p53-mediated activity during tumour suppression[J]. Nature, 2015, 520(7545): 57-62. DOI: 10.1038/nature14344.

30.Chu B, Kon N, Chen D, et al. ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway[J]. Nature Cell Biology, 2019, 21(5): 579-591. DOI: 10.1038/s41556-019-0305-6.

31.明道靖, 郭梦梦, 张晋辉, 等. 前列腺癌中PI3K/AKT通路调控PHF19基因表达的机制研究[J]. 医学新知, 2024, 34(2): 121-128. [Ming DJ, Guo MM, Zhang JH, et al. Mechanism research of PI3K/AKT pathway regulating PHF19 gene expression in prostate cancer[J]. Yixue Xinzhi Zazhi, 2024, 34(2): 121-128.] DOI: 10.12173/j.issn.1004- 5511.202401008.

32.Kang R, Kroemer G, Tang D. The tumor suppressor protein p53 and the ferroptosis network[J]. Free Radic Biol Med, 2019, 133: 162-168. DOI: 10.1016/j.freeradbiomed.2018.05.074.

33.Wu C, Zhao W, Yu J, et al. Induction of ferroptosis and mitochondrial dysfunction by oxidative stress in PC12 cells[J]. Sci Rep, 2018, 8(1): 574. DOI: 10.1038/s41598-017-18935-1.

34.Ou Y, Wang SJ, Li D, et al. Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses[J]. Proc Natl Acad Sci U S A, 2016, 113(44): E6806-E6812. DOI: 10.1073/pnas.1607152113.

35.Yang J, Shao C, Li W, et al. Protective effects of Astragaloside IV against oxidative injury and apoptosis in cultured astrocytes by regulating Nrf2/JNK signaling[J]. Exp Brain Res, 2021, 239(6): 1827-1840. DOI: 10.1007/s00221-021-06096-7.

36.江杰,杨智倩,杨鸿.栀子调控铁死亡治疗脑缺血再灌注损伤的网络药理学研究[J]. 中国药师, 2023, 26(12): 361-373. [Jiang J, Yang ZQ, Yang H. Network pharmacology study of Gardeniae Fructus in regulating ferroptosis for the treatment of cerebral ischemia-reperfusion injury[J]. China Pharmacist, 2023, 26(12): 361-373.] DOI: 10.12173/j.issn. 1008-049X.202311207.

37.Gao X, Hu W, Qian D, et al. The Mechanisms of Ferroptosis Under Hypoxia[J]. Cell Mol Neurobiol, 2023, 43(7): 3329-3341. DOI: 10.1007/s10571-023-01388-8.

38.Loboda A, Damulewicz M, Pyza E, et al. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism[J]. Cell Mol Life Sci, 2016, 73(17): 3221-3247. DOI: 10.1007/s00018-016-2223-0.

39.Gabre J, Chabasse C, Cao C, et al. Activated protein C accelerates venous thrombus resolution through heme oxygenase-1 induction[J]. J Thromb Haemost, 2014, 12(1): 93-102. DOI: 10.1111/jth.12424.

40.Sun Y, Chen P, Zhai B, et al. The emerging role of ferroptosis in inflammation[J]. Biomed Pharmacother, 2020, 127: 110108. DOI: 10.1016/j.biopha.2020.110108.

41.朱容慧, 陈俐, 陈阳, 等. 雷公藤红素用于脑卒中治疗的研究进展[J]. 中国药师, 2024, 24(4): 711-721.  [Zhu RH, Chen L, Chen Y, et al. Research progress of celastrol in the treatment of stroke[J]. China Pharmacist, 2024, 24(4): 711-721.] DOI: 10.12173/j.issn.1008-049X. 202312187.

42.Yamada N, Karasawa T, Kimura H, et al. Ferroptosis driven by radical oxidation of n-6 polyunsaturated fatty acids mediates acetaminophen-induced acute liver failure[J]. Cell Death Dis, 2020, 11(2): 144. DOI: 10.1038/s41419-020-2334-2.

43.Stockwell BR, Jiang X, Gu W. Emerging mechanisms and disease relevance of ferroptosis[J]. Trends Cell Biol, 2020, 30(6): 478-490. DOI: 10.1016/j.tcb.2020.02.009.

44.王佳, 李忻炎, 李琳钰, 等. IRF8靶向铁死亡在急性肺损伤中的作用及机制研究[J]. 医学新知, 2024, 34(4): 363-371. [Wang J, Li XY, Li YL, et al. Role and mechanism of IRF8 targeting ferroptosis in the pathogenesis of acute lung injury[J]. Yixue Xinzhi Zazhi, 2024, 34(4): 363-371.] DOI: 10.12173/j.issn.1004-5511.202403082.

45.Linkermann A, Skouta R, Himmerkus N, et al. Synchronized renal tubular cell death involves ferroptosis[J]. Proc Natl Acad Sci U S A, 2014, 111(47): 16836-16841. DOI: 10.1073/pnas.1415518111.

46.朝博, 任君浩, 苏优勒. 塞来昔布通过MAPK/ERK信号通路抑制炎症反应改善急性脑出血大鼠神经功能的机制研究[J]. 中国药师, 2023, 26(11): 181-188. [Chao B, Ren JH, Su YL. Mechanism study of celecoxib to improve neurological function in rats with acute intracerebral hemorrhage by inhibiting inflammation through the MAPK/ERK signal pathway[J]. China Pharmacist, 2023, 26(11): 181-188.] DOI: 10.12173/j.issn.1008-049X.202310025.

47.Yue R, Li X, Chen B, et al. Astragaloside IV Attenuates Glutamate-Induced Neurotoxicity in PC12 Cells through Raf-MEK-ERK Pathway[J]. PLoS One, 2015, 10(5): e0126603. DOI: 10.1371/journal.pone.0126603.  

48.Tsurusaki S, Tsuchiya Y, Koumura T, et al. Hepatic ferroptosis plays an important role as the trigger for initiating inflammation in nonalcoholic steatohepatitis[J]. Cell Death Dis, 2019, 10(6): 449. DOI: 10.1038/s41419-019-1678-y.

49.Wang C, Yuan W, Hu A, et al. Dexmedetomidine alleviated sepsis-induced myocardial ferroptosis and septic heart injury[J]. Mol Med Rep, 2020, 22(1): 175-184. DOI: 10.3892/mmr.2020.11114.

50.张富慧, 郝静峰, 张自艳. 等. 菊苣酸调控p38 MAPK/NF-κB/NLRP3信号通路对缺血性脑卒中大鼠神经元凋亡及炎症反应的影响[J]. 中风与神经疾病杂志, 2022, 39(8): 694-698. [Zhang FH, Hao JF, Zhang ZY, et al. Impacts of cichoric acid on neuronal apoptosis and inflammatory response in ischemic stroke rats by regulating p38 MAPK/NF-κB/NLRP3 signaling pathwaycichoric acid[J]. Journal of Apoplexy and Nervous Diseases, 2022, 39(8): 694-698.] DOI: 10.19845/j.cnki.zfysjjbzz. 2022.0175.

51.赖吴芳. 重组水蛭素对ApoE-/-小鼠动脉粥样硬化的作用及其机制的初步研究[D]. 南宁: 广西医科大学, 2018. https://cdmd.cnki.com.cn/Article/CDMD-10598-1019125601.htm.

Popular papers
Last 6 months