Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 29,2025 No.10 Detail

Progress in the components of Semen Armeniacae Amarum and its target prediction in the prevention and treatment of lung cancer

Published on Oct. 30, 2025Total Views: 25 times Total Downloads: 5 times Download Mobile

Author: SUN Cuige 1, 2 ZHENG Xiaonan 1, 2 DI Qing 1, 2 HU Liping 3 ZHAO Xiangxuan 1, 2

Affiliation: 1. College of Laboratory Animal Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China 2. College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China 3. Liaoning University of Traditional Chinese Medicine, Liaoning Provincial Academy of Traditional Chinese Medicine, Shenyang 110847, China

Keywords: Semen Armeniacae Amarum Chemical composition Molecular target Network pharmacology Lung cancer

DOI: 10.12173/j.issn.2097-4922.202507098

Reference: SUN Cuige, ZHENG Xiaonan, DI Qing, HU Liping, ZHAO Xiangxuan. Progress in the components of Semen Armeniacae Amarum and its target prediction in the prevention and treatment of lung cancer[J]. Yaoxue QianYan Zazhi, 2025, 29(10): 1738-1747. DOI: 10.12173/j.issn.2097-4922.202507098.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

As a traditional Chinese medicine, Semen Armeniacae Amarum has the effects of relieving cough and asthma, moistening dryness and promoting bowel movements, and it has been found to have anti-cancer effects in modern pharmacological research. In this paper, we first analyzed and summarized the chemical constituents of Semen Armeniacae Amarum, including many bioactive components, such as glycosides, fats, volatile oils, flavonoids, phenolic acids, phenylpropanoids, amino acids, proteins, vitamins and trace elements. Secondly, the experimental progress and clinical application of Semen Armeniacae Amarum and amygdalin against lung cancer in vitro and in vivo were summarized. Finally, we employed modern network pharmacology to predict its anti-lung cancer targets and pathways, and preliminarily analyzed the potential role of core targets in the treatment and prognosis of non-small cell lung cancer patients, providing valuable insights for its in-depth development as a novel drug for tumor prevention and treatment.

Full-text
Please download the PDF version to read the full text: download
References

1.杜丽佳, 于彩娜. 苦杏仁之药性考证[J]. 中国民族民间医药, 2023, 32(15): 46-49. [Du LJ, Yu CN. Textual research on the medicinal properties of bitter almonds[J]. Chinese Journal of Ethnomedicine and Ethnopharmacy, 2023, 32(15): 46-49.] DOI: 10.3969/j.issn.1007-8517.2023.13.zgmzmjyyzz202315011.

2.中国药典2020版. 一部[S]. 2020.

3.陈霞, 李计萍. 苦杏仁及其制剂的质量控制体系探讨[J]. 中国实验方剂学杂志, 2021, 27(19): 200-205. [Chen X, Li JP. Discussion on quality control of Armeniacae Semen Amarum and its preparations[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2021, 27(19): 200-205.] DOI: 10.13422/j.cnki.syfjx.20211651.

4.王力生, 邹节明, 袁伟恩, 等. 苦杏仁的炮制及有效成分提取和分析进展[J]. 分析测试技术与仪器, 2005, 11(1): 34-38. [Wang  LS, Zou JM, Yuan WE, et al. Processing of Semen Armeniacae Amanrum, extraction and analyzing of its effective compounds[J]. Analysis and Testing Technology and Instruments, 2005, 11(1): 34-38.] DOI: 10.3969/j.issn.1006-3757.2005.01.009.

5.薛海峰. 内蒙古不同种源西伯利亚杏杏仁主要成分分析及评价[D]. 呼和浩特: 内蒙古农业大学, 2016. https://cdmd.cnki.com.cn/Article/CDMD-10129-1016249796.htm.

6.赵文彬, 刘金荣, 黄韶光, 等. 新疆地产苦杏仁及油的营养成分研究[J]. 中国油脂, 2002, 27(2): 31-33. [Zhao WB, Liu JR, Huang SG, et al. Research on nutrition components of oil and Semen Armeniacae Amarum of Xinjiang[J]. China Oils and Fats, 2002, 27(2): 31-33.] DOI: 10.3321/j.issn:1003-7969.2002.02.011.

7.刘立轩, 李吉宁, 陈海燕, 等. 基于HPLC法及电子鼻技术的苦杏仁药材不同炮制方法研究[J]. 沈阳药科大学学报, 2023, 40(4): 494-500. [Liu LX, Li JN, Chen HY, et al. Study on different processing methods of bitter almond based on HPLC and electronic nose technology[J]. Journal of Shenyang Pharmaceutical University, 2023, 40(4): 494-500.] DOI: 10.14066/j.cnki.cn21-1349/r.2021.0514.

8.辛洁萍, 王海丽, 王敏, 等. 苦杏仁药材及其饮片质量标准提高[J]. 中国现代中药, 2020, 22(7): 1016-1021. [Xin JP, Wang  HL, Wang M, et al. Quality standards improvement of medicinal materials and cut crude drugs of bitter almond[J]. Modern Chinese Medicine, 2020, 22(7): 1016-1021.] DOI: 10.14066/j.cnki.cn21-1349/r.2021.0514.

9.Rai I, Bachheti RK, Saini CK, et al. A review on phytochemical, biological screening and importance of Wild Apricot (Prunus armeniaca L.)[J]. Orient Pharm Exp Med, 2015, 16(1): 1-15. DOI: 10.1007/s13596-015-0215-5.

10.Xu S, Xu X, Yuan S, et al. Identification and analysis of amygdalin, neoamygdalin and amygdalin amide in different processed bitter almonds by HPLC-ESI-MS/MS and HPLC-DAD[J]. Molecules, 2017, 22(9): 1425. DOI: 10.3390/molecules22091425.

11.周熙, 谢斌, 黄晓兰, 等. 基于高效液相色谱-四极杆飞行时间串联质谱法的苦杏仁与桃仁化学成分差异研究[J]. 分析测试学报, 2021, 40(6): 940-946. [Zhou X, Xie B, Huang  XL, et al. Study on chemical constituents differences between Armeniacae Amarum Semen and persicae semen based on high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry[J]. Journal of Instrumental Analysis, 2021, 40(6): 940-946.] DOI: 10.3969/j.issn.1004-4957.2021.06.021.

12.吴月亮, 许淼, 董胜君, 等. 不同产区苦杏仁营养成分分析[J]. 食品工业科技, 2019, 40(23): 300-305. [Wu YL, Xu  M, Dong SJ, et al. Analysis of nutritional composition of bitter almond from different growing areas[J]. Science and Technology of Food Industry, 2019, 40(23): 300-305.] DOI: 10.13386/j.issn1002-0306.2019.23.049.

13.陈莉纯, 生庆海, 刘敬科, 等. 杏仁油的功能特性、提取和微胶囊化研究综述[J]. 食品工业科技, 2024, 45(5): 384-392. [Chen LC, Sheng QH, Liu JK, et al. A Review on the functional properties, extraction and microencapsulation of almond oil[J]. Science and Technology of Food Industry, 2024, 45(5): 384-392.] DOI: 10.13386/j.issn1002-0306.2023030340.

14.李科友, 史清华, 朱海兰, 等. 苦杏仁主要营养成分研究[J]. 西北农业学报, 2003(2): 119-121. [Li KY, Shi QH, Zhu HL, et al. Study on main nutrient compositions of bitter almond[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2003(2): 119-121.] DOI: 10.3969/j.issn.1004-1389.2003.02.031.

15.回瑞华, 侯冬岩, 李铁纯, 等. 苦杏仁挥发油化学成分的微波-同时蒸馏萃取GC-MS分析[J]. 分析测试学报, 2003, 22(1): 55-57. [Hui RH, Hou DY, Li TC, et al. Analysis of volatile components in semen armeniacae amarum by GC-MS with microwave radiation and SDE method[J]. Journal of Instrumental Analysis, 2003, 22(1): 55-57.] DOI: 10.3969/j.issn.1004-4957.2003.01.017.

16.Saito J, Onishi N, Yamasaki J, et al. Benzaldehyde suppresses epithelial-mesenchymal plasticity and overcomes treatment resistance in cancer by targeting the interaction of 14-3-3ζ with H3S28ph[J]. Br J Cancer, 2025, 133(1): 27-39. DOI: 10.1038/s41416-025-03006-4.

17.吴东栋, 张清安, 范学辉, 等. 苦杏仁皮中生物活性成分的研究进展[J]. 食品与发酵工业, 2019, 45(7): 288-293. [Wu DD, Zhang QA, Fan XH, et al. Bioactive components of apricot kernel skin[J]. Food and Fermentation Industries, 2019, 45(7): 288-293.] DOI: 10.13995/j.cnki.11-1802/ts.018986.

18.Bolling BW, Dolnikowski G, Blumberg JB, et al. Polyphenol content and antioxidant activity of California almonds depend on cultivar and harvest year[J]. Food Chem, 2010, 122(3): 819-825. DOI: 10.1016/j.foodchem.2010.03.068.

19.Milbury PE, Chen CY, Dolnikowski GG, et al. Determination of flavonoids and phenolics and their distribution in almonds[J]. J Agric Food Chem, 2006, 54(14): 5027-5033. DOI: 10.1021/jf0603937.

20.Monagas M, Garrido I, Lebrón-Aguilar R, et al. Almond [Prunus dulcis (Mill.) D.A. Webb] skins as a potential source of bioactive polyphenols[J]. J Agric Food Chem, 2007, 55(21): 8498-8507. DOI: 10.1021/jf071780z.

21.Monagas M, Garrido I, Lebrón-Aguilar R, et al. Comparative flavan-3-ol profile and antioxidant capacity of roasted peanut, hazelnut, and almond skins[J]. J Agric Food Chem, 2009, 57(22): 10590-10599. DOI: 10.1021/jf901391a.

22.王海洋. 苦杏仁生产高值精细化学品工艺研究[D]. 北京: 中国石油大学(北京), 2019. DOI: 10.27643/d.cnki.gsybu.2019.001202.

23.文连君, 张清安, 张志琪. 响应曲面法优化苦杏仁皮总黄酮的微波提取工艺研究[J]. 南方农业学报, 2011, 42(1): 74-78. [Wen LJ, Zhang QA, Zhang ZQ. Effects of processing conditions on microwave extraction of total flavonoids from bitter almond skin and optimization of response surface methodology[J]. Journal of Southern Agriculture, 2011, 42(1): 74-78.] DOI: 10.3969/j.issn.2095-1191.2011.01.017.

24.Teets AS, Minardi CS, Sundararaman M, et al. Extraction, identification, and quantification of flavonoids and phenolic acids in electron beam-irradiated almond skin powder[J]. J Food Sci, 2009, 74(3): 298-305. DOI: 10.1111/j.1750-3841.2009.01112.x.

25.Hrichi S, Rigano F, Chaabane-Banaoues R, et al. Identification of fatty acid, lipid and polyphenol compounds from Prunus armeniaca L. kernel extracts[J]. Foods, 2020, 9(7): 896. DOI: 10.3390/foods9070896.

26.Bak EJ, Kim J, Jang S, et al. Gallic acid improves glucose tolerance and triglyceride concentration in diet-induced obesity mice[J]. Scand J Clin Lab Invest, 2013, 73(8): 607-614. DOI: 10.3109/00365513.2013.831470.

27.Thakare VN, Dhakane VD, Patel BM. Attenuation of acute restraint stress-induced depressive like behavior and hippocampal alterations with protocatechuic acid treatment in mice[J]. Metab Brain Dis, 2017, 32(2): 401-413. DOI: 10.1007/s11011-016-9922-y.

28.李科友, 史清华, 朱海兰, 等. 苦杏仁化学成分的研究[J]. 西北林学院学报, 2004, 19(2): 124-126. [Li KY, Shi QH, Zhu  HL, et al. Chemical compositions in bitter almond[J]. Journal of Northwest Forestry University, 2004, 19(2): 124-126.] DOI: 10.3969/j.issn.1001-7461.2004.02.037.

29.李东栋, 何韶衡. 食入性过敏原杏仁蛋白组分的双向电泳分析[J]. 细胞与分子免疫学杂志, 2004, 20(4): 473-477. [Li DD, He SH. Analysis of total proteins in the seed of almond (Prunus dulcis) by two-dimensional electrophoresis[J]. Chinese Journal of Cellular and Molecular Immunology, 2004, 20(4): 473-477.] DOI: 10.3321/j.issn:1007-8738.2004.04.027.

30.王奕洁. 苦杏仁蛋白组分鉴别方法研究[D]. 北京: 北京中医药大学, 2007. https://cdmd.cnki.com.cn/Article/CDMD-10026-2007078052.htm.

31.Lin D, Lin W, Gao G, et al. Purification and characterization of the major protein isolated from Semen Armeniacae Amarum and the properties of its thermally induced nanoparticles[J]. Int J Biol Macromol, 2020, 159: 850-858. DOI: 10.1016/j.ijbiomac.2020.05.070.

32.王香爱. 太白山苦杏仁中微量元素的光谱测定[J]. 食品研究与开发, 2016, 37(10): 117-119. [Wang AX. Determination of microelements in Taibaishan prunus dulcis by flame atomic absorption spectrometry[J]. Food Research and Development, 2016, 37(10): 117-119.] DOI: 10.3969/j.issn.1005-6521. 2016.10.029.

33.李红姣, 赵忠, 李巨秀. 杏仁种皮黑色素抑制晚期糖基化末端产物的研究[J]. 中国粮油学报, 2015, 30(2): 50-56. [Li HJ, Zhao Z, Li JX. Inhibitory effects of melanin derived from apricot testa on the formation of advanced glycation end products[J]. Journal of the Chinese Cereals and Oils Association, 2015, 30(2): 50-56.] https://www.cnki.com.cn/Article/CJFDTOTAL-ZLYX201502012.htm.

34.Wu J, Jin Y, Zhang M. Evaluation on the physicochemical and digestive properties of melanoidin from black garlic and their antioxidant activities in vitro[J]. Food Chem, 2021, 340: 127934. DOI: 10.1016/j.foodchem.2020.127934.

35.Dwivedi T, Kanta C, Singh LR, et al. A list of some important medicinal plants with their medicinal uses from Himalayan State Uttarakhand, India[J]. J Med Plants Studies, 2019, 7(2): 106-116. https://www.plantsjournal.com/archives/2019/vol7issue2/PartB/7-2-10-476.pdf.

36.Ceylan K. An Ethnobotanical Survey from Yahyali ( Kayseri̇) and Tarsus (Mersi̇n)[EB/OL]. (2014) [2025-03-15]. https://www.academia.edu/92235411/An_Ethnobotanical_Survey_from_Yahyali_Kayseri_and_Tarsus_Mersi_n_.

37.Chang HK, Shin MS, Yang HY, et al. Amygdalin induces apoptosis through regulation of Bax and Bcl-2 expressions in human DU145 and LNCaP prostate cancer cells[J]. Biol Pharm Bull, 2006, 29(8): 1597-602. DOI: 10.1248/bpb.29.1597.

38.Chen Y, Al-Ghamdi AA, Elshikh MS, et al. Phytochemical profiling, antioxidant and HepG2 cancer cells' antiproliferation potential in the kernels of apricot cultivars[J]. Saudi J Biol Sci, 2020, 27(1): 163-172. DOI: 10.1016/j.sjbs.2019.06.013.

39.Chen Y, Ma J, Wang F, et al. Amygdalin induces apoptosis in human cervical cancer cell line HeLa cells[J]. Immunopharmacol Immunotoxicol, 2013, 35(1): 43-51. DOI: 10.3109/08923973.2012.738688.

40.Lee HM, Moon A. Amygdalin regulates apoptosis and adhesion in Hs578T triple-negative breast cancer cells[J]. Biomol Ther (Seoul), 2016, 24(1): 62-66. DOI: 10.4062/biomolther.2015.172.

41.Shi J, Chen Q, Xu M, et al. Recent updates and future perspectives about amygdalin as a potential anticancer agent: a review[J]. Cancer Med, 2019, 8(6): 3004-3011. DOI: 10.1002/cam4.2197.

42.Barakat H, Aljutaily T, Almujaydil MS, et al. Amygdalin: a review on its characteristics, antioxidant potential, gastrointestinal microbiota intervention, anticancer therapeutic and mechanisms, toxicity, and encapsulation[J]. Biomolecules, 2022, 12(10): 1514. DOI: 10.3390/biom12101514.

43.Ayaz Z, Zainab B, Khan S, et al. In silico authentication of amygdalin as a potent anticancer compound in the bitter kernels of family rosaceae[J]. Saudi J Biol Sci, 2020, 27(9): 2444-2451. DOI: 10.1016/j.sjbs.2020.06.041.

44.Yamshanov VA, Kovan'ko EG, Pustovalov YI. Effects of amygdaline from apricot kernel on transplanted tumors in mice[J]. Bull Exp Biol Med, 2016, 160(5): 712-714. DOI: 10.1007/s10517-016-3257-x.

45.Li Y, Yan B, He S. Advances and challenges in the treatment of lung cancer[J]. Biomed Pharmacother, 2023. 169: 115891. DOI: 10.1016/j.biopha.2023.115891.

46.Tang M, Wang S, Zhao B, et al. Traditional Chinese medicine prolongs progression-free survival and enhances therapeutic effects in epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) treated non-small-cell lung cancer (NSCLC) patients harboring EGFR mutations[J]. Med Sci Monit, 2019, 25: 8430-8437. DOI: 10.12659/MSM.917251.

47.Zhao X, Dai X, Wang S, et al. Traditional Chinese medicine integrated with chemotherapy for stage II-IIIA patients with non-small-cell lung cancer after radical surgery: a retrospective clinical analysis with small sample size[J]. Evid Based Complement Alternat Med, 2018: 4369027. DOI: 10.1155/2018/4369027.

48.Tsai FJ, Cheng CF, Chen CJ, et al. Effects of Chinese herbal medicine therapy on survival and hepatic outcomes in patients with hepatitis C virus infection in Taiwan[J]. Phytomedicine, 2019, 57: 30-38. DOI: 10.1016/j.phymed.2018.09.237.

49.Qian L, Xie B, Wang Y, et al. Amygdalin-mediated inhibition of non-small cell lung cancer cell invasion in vitro[J]. Int J Clin Exp Pathol, 2015, 8(5): 5363-5370. https://pubmed.ncbi.nlm.nih.gov/26191238/.

50.孙卓琳, 刘京伟, 匡长春. 苦杏仁苷抑制人肺癌NCI-H1299细胞体外侵袭的机制[J]. 中国药科大学学报, 2016, 47(4): 479-482. [Sun ZL, Liu JW, Kuang CC. Inhibitions and mechanisms of amygdalin in non-small cell lung cancer NCIH1299 cell line invasion in vitro[J]. Journal of China Pharmaceutical University, 2016, 47(4): 479-482.] DOI: 10.11665/j.issn.1000-5048.20160415.

51.刘奎. 苦杏仁苷在KRAS突变非小细胞肺癌细胞生长和肿瘤免疫中的作用及机制[J]. 皖南医学院学报, 2025, 44(2): 107-111. [Liu K. Role and mechanism of amygdalin in cell growth and tumor immunity in KRAS mutated non-small cell lung cancer cells[J]. Acta Academiae Medicinae Wannan, 2025, 44(2): 107-111.] DOI: 10.3969/j.issn.1002-0217.2025.02.002.

52.Lin S, Wen J, Xu X, et al. Amygdalin induced mitochondria-mediated apoptosis of lung cancer cells via regulating NF-κB/NF-κB signaling cascade in vitro and in vivo[J]. Am J Chin Med, 2022, 50(5): 1361-1386. DOI: 10.1142/S0192415X22500586.

53.Mosayyebi B, Imaniet M, Mohammadial L, et al. Comparison between β-cyclodextrin-amygdalin nanoparticle and amygdalin effects on migration and apoptosis of MCF-7 breast cancer cell line[J]. J Clust Sci, 2022, 33(3): 935-947. DOI: 10.1007/s10876-021-02019-2.

54.Cecarini V, Selmi S, Cuccioloni M, et al. Targeting proteolysis with cyanogenic glycoside amygdalin induces apoptosis in breast cancer cells[J]. Molecules, 2022, 27(21): 7591. DOI: 10.3390/molecules27217591.

55.Juengel E, Afschar M, Makarević J, et al. Amygdalin blocks the in vitro adhesion and invasion of renal cell carcinoma cells by an integrin-dependent mechanism[J]. Int J Mol Med, 2016, 37(3): 843-850. DOI: 10.3892/ijmm.2016.2454.

56.Zhou J, Hou J, Rao J, et al. Magnetically directed enzyme/prodrug prostate cancer therapy based on beta-glucosidase/amygdalin[J]. Int J Nanomedicine, 2020, 15: 4639-4657. DOI: 10.2147/IJN.S242359.

57.Hosny S, Sahyon H, Youssef M, et al. Prunus armeniaca L. seed extract and its amygdalin containing fraction induced mitochondrial-mediated apoptosis and autophagy in liver carcinogenesis[J]. Anticancer Agents Med Chem, 2021, 21(5): 621-629. DOI: 10.2174/1871520620666200608124003.

58.Curran WJ. Law-medicine notes. Laetrile for the terminally ill: Supreme Court stops the nonsense[J]. N Engl J Med, 1980, 302(11): 619-621. DOI: 10.1056/NEJM198003133021108.

59.Milazzo S, Horneber M. Laetrile treatment for cancer[J]. Cochrane Database Syst Rev, 2015, 2015(4): CD005476. DOI: 10.1002/14651858.CD005476.pub4.

60.Chaouali N, Gana I, Dorra A, et al. Potential toxic levels of cyanide in almonds (prunus amygdalus), apricot kernels (prunus armeniaca), and almond syrup[J]. ISRN Toxicol, 2013: 610648. DOI: 10.1155/2013/610648.

61.Jaswal V, Palanivelu JCR. Effects of the gut microbiota on Amygdalin and its use as an anti-cancer therapy: substantial review on the key components involved in altering dose efficacy and toxicity[J]. Biochem Biophys Rep, 2018, 14: 125-132. DOI: 10.1016/j.bbrep.2018.04.008.

62.Thanacoody R, Anderson M. Epidemiology of poisoning[J]. Pharmacol Ther, 1993, 59(3): 251-256. DOI: 10.1016/0163-7258(93)90069-p.

63.Carbone K, Sytar O, Sharopov F, et al. Anticancer attributes and multifaceted pharmacological implications of laetrile and amygdalin[J]. Cell Biol Int, 2025, 49(3): 205-220. DOI: 10.1002/cbin.12276.

64.Tang S, Wang M, Peng Y, et al. Armeniacae Semen Amarum: a review on its botany, phytochemistry, pharmacology, clinical application, toxicology and pharmacokinetics[J]. Front Pharmacol, 2024, 15: 1290888. DOI: 10.3389/fphar.2024.1290888.

65.National cancer institute begins laetrile clinical trial[J]. JAMA, 1980, 244(6): 538. DOI: 10.1001/jama.1980.03310060004002.

66.Moertel CG, Fleming TR, Rubin J, et al. A clinical trial of amygdalin (Laetrile) in the treatment of human cancer[J]. N Engl J Med, 1982, 306(4): 201-206. DOI: 10.1056/NEJM198201283060403.

67.Ames MM, Kovach JS, Flora KP. Initial pharmacologic studies of amygdalin (laetrile) in man[J]. Res Commun Chem Pathol Pharmacol, 1978, 22(1): 175-185. https://pubmed.ncbi.nlm.nih.gov/725316/.

68.Castellanos E, Feld E, Horn L. Driven by mutations: the predictive value of mutation subtype in EGFR-mutated non-small cell lung cancer[J]. J Thorac Oncol, 2017, 12(4): 612-623. DOI: 10.1016/j.jtho.2016.12.014.

69.Lee HJ, Zhuang G, Cao Y, et al. Drug resistance via feedback activation of Stat3 in oncogene-addicted cancer cells[J]. Cancer Cell, 2014, 26(2): 207-221. DOI: 10.1016/j.ccr.2014.05.019.

70.Rice SJ, Liu X, Zhang J, et al. Advanced NSCLC patients with high IL-6 levels have altered peripheral T cell population and signaling[J]. Lung Cancer, 2019, 131: 58-61. DOI: 10.1016/j.lungcan.2019.03.014.

71.Zheng X, Lu G, Yao Y, et al. An autocrine IL-6/IGF-1R loop mediates EMT and promotes tumor growth in non-small cell lung cancer[J]. Int J Biol Sci, 2019, 15(9): 1882-1891. DOI: 10.7150/ijbs.31999.

72.Hua X, Xu Q, Wu R, et al. ALKBH5 promotes non-small cell lung cancer progression and susceptibility to anti-PD-L1 therapy by modulating interactions between tumor and macrophages[J]. J Exp Clin Cancer Res, 2024, 43(1): 164. DOI: 10.1186/s13046-024-03073-0.

73.Xu X, Qiu S, Zeng B, et al. N(6)-methyladenosine demethyltransferase FTO mediated m(6)A modification of estrogen receptor alpha in non-small cell lung cancer tumorigenesis[J]. Oncogene, 2024, 43(17): 1288-1302. DOI: 10.1038/s41388-024-02992-8.

74.Krysan K, Kusko R, Grogan T, et al. PGE2-driven expression of c-Myc and oncomiR-17-92 contributes to apoptosis resistance in NSCLC[J]. Mol Cancer Res, 2014, 12(5): 765-774. DOI: 10.1158/1541-7786.MCR-13-0377.

75.Song X, Zhou Z, Elmezayen A, et al. SRC kinase drives multidrug resistance induced by KRAS-G12C inhibition[J]. Sci Adv, 2024, 10(50): eadq4274. DOI: 10.1126/sciadv.adq4274.

76.Martin B, Paesmans M, Berghmans T, et al. Role of Bcl-2 as a prognostic factor for survival in lung cancer: a systematic review of the literature with meta-analysis[J]. Br J Cancer, 2003, 89(1): 55-64. DOI: 10.1038/sj.bjc.6601095.

77.Pore MM, Hiltermann TJ, Kruyt FA. Targeting apoptosis pathways in lung cancer[J]. Cancer Lett, 2013, 332(2): 359-368. DOI: 10.1016/j.canlet.2010.09.012.

78.Ni J, Zhou LL, Ding L,et al. PPARgamma agonist efatutazone and gefitinib synergistically inhibit the proliferation of EGFR-TKI-resistant lung adenocarcinoma cells via the PPARgamma/PTEN/Akt pathway[J]. Exp Cell Res, 2017, 361(2): 246-256. DOI: 10.1016/j.yexcr.2017.10.024.

79.Susaki Y, Inoue M, Minami M, et al. Inhibitory effect of PPARgamma on NR0B1 in tumorigenesis of lung adenocarcinoma[J]. Int J Oncol, 2012, 41(4): 1278-1284. DOI: 10.3892/ijo.2012.1571.

80.Bhattacharyya N, Gupta S, Sharma S, et al. CDK1 and HSP90AA1 appear as the novel regulatory genes in non-small cell lung cancer: a bioinformatics approach[J]. J Pers Med, 2022, 12(3): 393. DOI: 10.3390/jpm12030393.

81.Burrows F, Zhang H, Kamal A. Hsp90 activation and cell cycle regulation[J]. Cell Cycle, 2004, 3(12): 1530-1536. DOI: 10.4161/cc.3.12.1277.

82.Wong DS, Jay DG. Emerging roles of extracellular Hsp90 in cancer[J]. Adv Cancer Res, 2016, 129: 141-163. DOI: 10.1016/bs.acr.2016.01.001.

83.Ryan SL, Beard S, Barr MP, et al. Targeting NF-kappaB-mediated inflammatory pathways in cisplatin-resistant NSCLC[J]. Lung Cancer, 2019, 135: 217-227. DOI: 10.1016/j.lungcan.2019.07.006.

84.Dimitrakopoulos FI, Antonacopoulou AG, Kottorou A, et al. NSCLC and the alternative pathway of NF-kappaB: uncovering an unknown relation[J]. Virchows Arch, 2012, 460(5): 515-523. DOI: 10.1007/s00428-012-1230-2.

Popular papers
Last 6 months