Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles New Online Detail

A bibliometric analysis of nanomaterial-mediated therapy for glioma

Published on Dec. 30, 2025Total Views: 19 times Total Downloads: 3 times Download Mobile

Author: JIANG Lanfang 1 GUO Sitong 2 HUANG Ke 1 XU Dandan 2 XU Qimeng 2 CHEN Xiaoyu 1, 2

Affiliation: 1. Graduate School of Guangxi University of Chinese Medicine, Nanning 530000, China 2. Department of Pharmacy, The Peoples Hospital of Guangxi Zhuang Autonomous Region, Nanning 530000, China

Keywords: Nanomaterials Glioma Bibliometrics Blood-brain barrier CiteSpace Knowledge graph Visualization analysis Research outlook

  • Abstract
  • Full-text
  • References
Abstract

Objective  Through bibliometric analysis and visualization techniques, to clarify the current application status, research hotspots, and trends of nanomaterials in the treatment of gliomas, and provide a scientific basis for future research directions in this field.

Methods  This study wason based the Web of Science Core Collection database to retrieve literature related to nanonmaterials and glioma and reviews published between July 1, 2013, and July 1, 2025. The quantitative analysis and visualization of the included literature were conducted using VOSviewer and CiteSpace software to examine publication years, country and regional distribution, authors, journals, institutions, keywords, and other factors.

Results  A total of 6 270 English articles on nanomaterials-mediated gliomas were retrieved, including 1 013 reviews and 5 257 articles. From 2013 to 2025, the overall number of publications in the field of nanomaterial therapy for glioma showed an overall upward trend. A total of 105 countries worldwide participated in research in this field, with China and the United States making the most prominent contributions, ranking first and second in publication volume. Among authors, Gao Huile topped both publication volume and citation frequency. Publications were distributed across 978 journals, with the Journal of Controlled Release publishing the highest number of articles. Among 5,450 research institutions, the Chinese Academy of Sciences and Fudan University demonstrated outstanding performance. Research hotspots centered on nanomaterials crossing the blood-brain barrier and targeted drug delivery systems, photodynamic and photothermal therapies, as well as challenges and safety concerns in clinical translation.

Conclusion  Nanomaterials demonstrate significant application value and promise in glioma treatment, particularly in enhancing drug targeting and developing novel therapeutic strategies. Future efforts should focus on advancing material optimization and clinical translation research to address critical challenges such as biosafety and large-scale production.

Full-text
Please download the PDF version to read the full text: download
References

1.国家卫生健康委员会医政医管局. 脑胶质瘤诊疗规范(2018年版)[J]. 中华神经外科杂志, 2019, 35(3): 217-239. [National Health Commission Medical Administration Bureau. Guidelines for the diagnosis and treatment of gliomas (2018 edition)[J].Chinese Journal of Neurosurgery, 2019, 35(3): 217-239.] DOI: 10.3760/cma.j.issn.1001-2346.2019.03.001.

2.Sun JK, Li BB, Shu C, et al. Functions and clinical significance of circular RNAs in glioma[J]. Mol Cancer, 2020, 19(1): 34. DOI: 10.1186/s12943-019-1121-0.

3.Lara-Velazquez M, Al-Kharboosh R, Jeanneret S, et al. Advances in brain tumor surgery for glioblastoma in adults[J]. Brain Sci, 2017, 7(12): 166. DOI: 10.3390/brainsci7120166.

4.Stupp R, Hegi ME, Gilbert MR, et al. Chemoradiotherapy in malignant glioma: standard of care and future directions[J]. J Clin Oncol, 2007, 25(26): 4127-4136. DOI: 10.1200/jco.2007.11.8554.

5.Malinovskaya YA, Kovalenko EI, Kovshova TS, et al. Cytotoxicity and hemocompatibility of doxorubicin-loaded plga nanoparticles[J]. Russ J Biother, 2020, 19(1): 71-80. DOI: 10.17650/1726-9784-2019-19-1-71-80.

6.Liu YY, Ran R, Chen JT, et al. Paclitaxel loaded liposomes decorated with a multifunctional tandem peptide for glioma targeting[J]. Biomaterials, 2014, 35(17): 4835-4847. DOI: 10.1016/j.biomaterials.2014.02.031.

7.Mohamed MS, Veeranarayanan S, Poulose AC, et al. Type 1 ribotoxin-curcin conjugated biogenic gold nanoparticles for a multimodal therapeutic approach towards brain cancer[J]. Biochim Biophys Biochim Biophys Acta, 2014, 1840(6): 1657-1669. DOI: 10.1016/j.bbagen.2013.12.020.

8.Shevtsov MA, Nikolaev BP, Yakovleva LY, et al. 70-kDa heat shock protein coated magnetic nanocarriers as a nanovaccine for induction of anti-tumor immune response in experimental glioma[J]. J Control Release, 2015, 220: 329-340. DOI: 10.1016/j.jconrel.2015.10.051.

9.Ganganboina AB, Dega NK, Tran HL, et al. Application of sulfur-doped graphene quantum dots@gold-carbon nanosphere for electrical pulse-induced impedimetric detection of glioma cells[J]. Biosens Bioelectron, 2021, 181: 113151. DOI: 10.1016/j.bios.2021.113151.

10.Krupa P, Rehak S, Diaz-Garcia D, et al. Nanotechnology-new trends in the treatment of brain tumours[J]. Acta medica (Hradec Kralove), 2014, 57(4): 142-150. DOI: 10.14712/18059694.2015.79.

11.Jiang LY, Zhou Q, Mu KT, et al. pH/temperature sensitive magnetic nanogels conjugated with Cy5.5-labled lactoferrin for MR and fluorescence imaging of glioma in rats[J]. Biomaterials, 2013, 34(30): 7418-7428. DOI: 10.1016/j.biomaterials.2013.05.078.

12.Guo B, Sheng ZH, Hu DH, et al. Through scalp and skull NIR-II photothermal therapy of deep orthotopic brain tumors with precise photoacoustic imaging guidance[J]. Adv Mater, 2018, 30(35): e1802591. DOI: 10.1002/adma.201802591.

13.Zhu XF, Zhou H, Liu YN, et al. Transferrin/aptamer conjugated mesoporous ruthenium nanosystem for redox-controlled and targeted chemo-photodynamic therapy of glioma[J]. Acta Biomater, 2018, 82: 143-157. DOI: 10.1016/j.actbio.2018.10.012.

14.Hainfeld JF, Ridwan SM, Stanisheyskiy Y, et al. Iodine nanoparticles enhance radiotherapy of intracerebral human glioma in mice and increase efficacy of chemotherapy[J]. Sci Rep, 2019, 9(1): 4505. DOI: 10.1038/s41598-019-41174-5.

15.Donthu N, Kumar S, Mukherjee D, et al. How to conduct a bibliometric analysis: an overview and guidelines[J]. J Bus Res, 2021, 133: 285-296. DOI: 10.1016/j.jbusres.2021.04.070.

16.van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping[J]. Scientometrics, 2010, 84(2): 523-538. DOI: 10.1007/s11192-009-0146-3.

17.Cui Y, Zhang M, Zeng F, et al. Dual-targeting magnetic PLGA nanoparticles for codelivery of paclitaxel and curcumin for brain tumor therapy[J]. ACS Appl Mater Interfaces, 2016, 8(47): 32159-32169. DOI: 10.1021/acsami.6b10175.

18.Lin TT, Zhao PF, Jiang YF, et al. Blood-brain-barrier-penetrating albumin nanoparticles for biomimetic drug delivery via albumin-binding protein pathways for antiglioma therapy[J]. ACS Nano, 2016, 10(11): 9999-10012. DOI: 10.1021/acsnano.6b04268.

19.Oberoi RK, Parrish KE, Sio TT, et al. Strategies to improve delivery of anticancer drugs across the blood-brain barrier to treat glioblastoma[J]. Neuro Oncol, 2016, 18(1): 27-36. DOI: 10.1093/neuonc/nov164.

20.Gao HL, Zhang S, Cao SJ, et al. Angiopep-2 and activatable cell-penetrating peptide dual-functionalized nanoparticles for systemic glioma-targeting delivery[J]. Mol Pharm, 2014, 11(8): 2755-2763. DOI: 10.1021/mp500113p.

21.Ruan SB, Qin L, Xiao W, et al. Acid-responsive transferrin dissociation and GLUT mediated exocytosis for increased blood-brain barrier transcytosis and programmed glioma targeting delivery[J]. Adv Funct Mater, 2018, 28(30): 16. DOI: 10.1002/adfm.201802227.

22.Ruan SB, Yuan MQ, Zhang L, et al. Tumor microenvironment sensitive doxorubicin delivery and release to glioma using angiopep-2 decorated gold nanoparticles[J]. Biomaterials, 2015, 37: 425-435. DOI: 10.1016/j.biomaterials.2014.10.007.

23.Tian T, Li J, Xie C, et al. Targeted Imaging of brain tumors with a framework nucleic acid probe[J]. ACS Appl Mater Interfaces, 2018, 10(4): 3414-3420. DOI: 10.1021/acsami.7b17927.

24.Mao J, Ran D, Xie C, et al. EGFR/EGFRvIII dual-targeting peptide-mediated drug delivery for enhanced glioma therapy[J]. ACS Appl Mater Interfaces, 2017, 9(29): 24462-24475. DOI: 10.1021/acsami.7b05617.

25.Wang S, Li C, Qian M, et al. Augmented glioma-targeted theranostics using multifunctional polymer-coated carbon nanodots[J]. Biomaterials, 2017, 141: 29-39. DOI: 10.1016/j.biomaterials.2017.05.040.

26.Arvanitis CD, Ferraro GB, Jain RK. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases[J]. Nat Rev Cancer, 2020, 20(1): 26-41. DOI: 10.1038/s41568-019-0205-x.

27.Mehta AI, Choi BD, Ajay D, et al. Convection enhanced delivery of macromolecules for brain tumors[J]. Curr Drug Discov Technol, 2012, 9(4): 305-310. DOI: 10.2174/157016312803305951.

28.Hall WA, Sherr GT. Convection-enhanced delivery of targeted toxins for malignant glioma[J]. Expert Opin Drug Deliv, 2006, 3(3): 371-377. DOI: 10.1517/17425247.3.3.371.

29.van Woensel M, Wauthoz N, Rosiere R, et al. Formulations for intranasal delivery of pharmacological agents to combat brain disease: a new opportunity to tackle GBM?[J]. Cancers, 2013, 5(3): 1020-1048. DOI: 10.3390/cancers5031020.

30.Colombo M, Figueiró F, Dias AD, et al. Kaempferol-loaded mucoadhesive nanoemulsion for intranasal administration reduces glioma growth in vitro[J]. Int J Pharm, 2018, 543(1-2): 214-223. DOI: 10.1016/j.ijpharm.2018.03.055.

31.Afzalipour R, Khoei S, Khoee S, et al. Dual-targeting temozolomide loaded in folate-conjugated magnetic triblock copolymer nanoparticles to improve the therapeutic efficiency of rat brain gliomas[J]. ACS Biomater Sci Eng, 2019, 5(11): 6000-6011. DOI: 10.1021/acsbiomaterials.9b00856.

32.Chertok B, Moffat BA, David AE, et al. Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors[J]. Biomaterials, 2008, 29(4): 487-496. DOI: 10.1016/j.biomaterials.2007.08.050.

33.Zhu JJ, Zhang Y, Chen XJ, et al. Angiopep-2 modified lipid-coated mesoporous silica nanoparticles for glioma targeting therapy overcoming BBB[J]. Biochem Biophys Res Commun, 2021, 534: 902-907. DOI: 10.1016/j.bbrc.2020.10.076.

34.Narendra, Mehata AK, Viswanadh MK, et al. Formulation and invitroevaluation of upconversionnanoparticle-loaded liposomes for brain cancer[J]. Therapeutic delivery, 2020, 11(9): 557-571. DOI: 10.4155/tde-2020-0070.

35.Fu S, Liang M, Wang Y, et al. Dual-modified novel biomimetic nanocarriers improve targeting and therapeutic efficacy in glioma[J]. ACS Appl Mater Interfaces, 2018, 11(2): 1841-1854. DOI: 10.1021/acsami.8b18664.

36.Ismail M, Yang W, Li Y, et al. Targeted liposomes for combined delivery of artesunate and temozolomide to resistant glioblastoma[J]. Biomaterials, 2022, 287: 121608. DOI: 10.1016/j.biomaterials.2022.121608.

37.Ren J, Shen S, Wang D, et al. The targeted delivery of anticancer drugs to brain glioma by PEGylated oxidized multi-walled carbon nanotubes modified with angiopep-2[J]. Biomaterials, 2012, 33(11): 3324-3333. DOI: 10.1016/j.biomaterials.2012.01.025.

38.Mohamadi N, Kazemi SM, Mohammadian M, et al. Toxicity of cisplatin-loaded poly butyl cyanoacrylate nanoparticles in a brain cancer cell line: anionic polymerization results[J]. Asian Pac J Cancer Prev, 2017, 18(3): 629-632. DOI: 10.22034/APJCP.2017.18.3.629.

39.Mendanha D, de Castro JV, Ferreira H, et al. Biomimetic and cell-based nanocarriers-new strategies for brain tumor targeting[J]. J Control Release, 2021, 337: 482-493. DOI: 10.1016/j.jconrel.2021.07.047.

40.Zhai MF, Wang YL, Zhang LG, et al. Glioma targeting peptide modified apoferritin nanocage[J]. Drug Deliv, 2018, 25(1): 1013-1024. DOI: 10.1080/10717544.2018.1464082.

41.Zeng L, Zou L, Yu H, et al. Treatment of malignant brain tumor by tumor-triggered programmed wormlike micelles with precise targeting and deep penetration[J]. Adv Funct Mater, 2016, 26(23): 4201-4212. DOI: 错误!超链接引用无效。.

42.Wang X, Song B, Wu M, et al. Immune cell targeting-mediated cytomimetic drug delivery system for BBB-penetrating and precise therapy of in situ glioma[J]. Mater Today Bio, 2025, 32: 101694.DOI: 10.1016/j.mtbio.2025.101694.

43.Lu YJ, Vayalakkara RK, Dash BS, et al. Immunomodulatory R848-loaded anti-PD-L1-conjugated reduced graphene oxide quantum dots for photothermal immunotherapy of glioblastoma[J]. Pharmaceutics, 2024, 16(8): 1064. DOI: 10.3390/pharmaceutics16081064.

44.Chai ZL, Hu XF, Wei XL, et al. A facile approach to functionalizing cell membrane-coated nanoparticles with neurotoxin-derived peptide for brain-targeted drug delivery[J]. J Control Release, 2017, 264: 102-111. DOI: 10.1016/j.jconrel.2017.08.027.

45.Tang XL, Jing F, Lin BL, et al. pH-responsive magnetic mesoporous silica-based nanoplatform for synergistic photodynamic therapy/chemotherapy[J]. ACS Appl Mater Interfaces, 2018, 10(17): 15001-15011. DOI: 10.1021/acsami.7b19797.

46.Day ES, Thompson PA, Zhang LN, et al. Nanoshell-mediated photothermal therapy improves survival in a murine glioma model[J]. J Neurooncol, 2011, 104(1): 55-63. DOI: 10.1007/s11060-010-0470-8.

47.Jain KK. A critical overview of targeted therapies for glioblastoma[J]. Front Oncol, 2018, 8: 419. DOI: 10.3389/fonc.2018.00419.

48.Hill JS, Kahl SB, Stylli SS, et al. Selective tumor kill of cerebral glioma by photodynamic therapy using a boronated porphyrin photosensitizer[J]. Proc Natl Acad Sci U S A, 1995, 92(26): 12126-12130. DOI: 10.1073/pnas.92.26.12126.

49.George JE 3rd, Ahmad Y, Varghai D, et al. Pc 4 photodynamic therapy of U87-derived human glioma in the nude rat[J]. Lasers Surg Med, 2005, 36(5): 383-389. DOI: 10.1002/lsm.20185.

50.Gary-Bobo M, Hocine O, Brevet D, et al. Cancer therapy improvement with mesoporous silica nanoparticles combining targeting, drug delivery and PDT[J]. Int J Pharm, 2012, 423(2): 509-515. DOI: 10.1016/j.ijpharm.2011.11.045.

51.Meyers JD, Cheng Y, Broome AM, et al. Peptide-targeted gold nanoparticles for photodynamic therapy of brain cancer[J]. Part Part Syst Charact, 2015, 32(4): 448-457. DOI: 10.1002/ppsc.201400119.

52.李学刚, 冯华, 李飞. 脑胶质瘤光动力治疗及光敏剂引导手术的研究与临床应用进展[J]. 中南大学学报(医学版), 2018, 43(4): 360-367. [Li X, Feng H, Li F. Progression of basic research, clinical application of photodynamic therapy and fluorescence-guided surgery in glioma treatment[J]. Journal of Central South University (Medical Science), 2018, 43(4): 360-367.] DOI: 10.11817/j.issn.1672-7347.2018.04.005.

53.Kabuto M, Kaye AH, Hill JS, et al. Antitumour effect of MX2, a new morpholino anthracycline against C6 glioma cells and its cytotoxic effect in combination with photodynamic therapy[J]. J Clin Neurosci, 1994, 1(1): 47-52. DOI: 10.1016/0967-5868(94)90010-8.

54.Xu D, Baidya A, Deng K, et al. Multifunctional nanoparticle PEG-Ce6-Gd for MRI-guided photodynamic therapy[J]. Oncol Rep, 2021, 45(2): 547-556. DOI: 10.3892/or.2020.7871.

55.Ohtsuka Y, Suehiro S, Inoue A, et al. Berberine as a potential enhancer for 5-ALA-mediated fluorescence in glioblastoma: increasing detectability of infiltrating glioma stem cells to optimize 5-ALA-guided surgery[J]. Neuro-Oncology, 2024;141(3):653-663. DOI: 10.3171/2023.12.JNS231506.

56.Pellosi DS, Paula LB, de Melo MT, et al. Targeted and synergic glioblastoma treatment: multifunctional nanoparticles delivering verteporfin as adjuvant therapy for temozolomide chemotherapy[J]. Mol Pharm, 2019, 16(3): 1009-1024. DOI: 10.1021/acs.molpharmaceut.8b01001.

57.Kumari S, Sharma N, Sahi SV. Advances in cancer therapeutics: conventional thermal therapy to nanotechnology-based photothermal therapy[J]. Pharmaceutics, 2021, 13(8): 1174. DOI: 10.3390/pharmaceutics13081174.

58.Jia YL, Wang XB, Hu DH, et al. Phototheranostics: active targeting of orthotopic glioma using biomimetic proteolipid nanoparticles[J]. ACS Nano, 2019, 13(1): 386-398. DOI: 10.1021/acsnano.8b06556.

59.Han HS, Choi KY. Advances in nanomaterial-mediated photothermal cancer therapies: toward clinical applications[J]. Biomedicines, 2021, 9(3): 305. DOI: 10.3390/biomedicines9030305.

60.Huang XH, El-Sayed IH, Qian W, et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods[J]. J Am Chem Soc, 2006, 128(6): 2115-2120. DOI: 10.1021/ja057254a.

61.Li YB, Bai GX, Zeng SJ, et al. Theranostic carbon dots with innovative NIR-II emission for in vivo renal-excreted optical imaging and photothermal therapy[J]. ACS Appl Mater Interfaces, 2019, 11(5): 4737-4744. DOI: 10.1021/acsami.8b14877.

62.Lyu Y, Fang Y, Miao QQ, et al. Intraparticle molecular orbital engineering of semiconducting polymer nanoparticles as amplified theranostics for in vivo photoacoustic imaging and photothermal therapy[J]. ACS Nano, 2016, 10(4): 4472-4481. DOI: 10.1021/acsnano.6b00168.

63.Madsen SJ, Christie C, Hong SJ, et al. Nanoparticle-loaded macrophage-mediated photothermal therapy: potential for glioma treatment[J]. Lasers Med Sci, 2015, 30(4): 1357-1365. DOI: 10.1007/s10103-015-1742-5.

64.Wang JF, Liu YS, Morsch M, et al. Brain-targeted aggregation-induced-emission nanoparticles with near-infrared imaging at 1550 nm boosts orthotopic glioblastoma theranostics[J]. Adv Mater, 2022, 34(5): e2106082. DOI: 10.1002/adma.202106082.

65.Galstyan A, Markman JL, Shatalova ES, et al. Blood-brain barrier permeable nano immunoconjugates induce local immune responses for glioma therapy[J]. Nat Commun, 2019, 10(1): 3850.DOI: 10.1038/s41467-019-11719-3.

66.Karki K, Ewing JR, Ali MM. Targeting glioma with a dual mode optical and paramagnetic nanoprobe across the blood-brain tumor barrier[J]. J Nanomed Nanotechnol, 2016, 7(4): 375. DOI: 10.4172/2157-7439.1000395.

67.Adir O, Poley M, Chen G, et al. Integrating artificial intelligence and nanotechnology for precision cancer medicine[J]. Adv Mater, 2020, 32(13): e1901989. DOI: 10.1002/adma.201901989.

68.Fabel K, Dietrich J, Hau P, et al. Long-term stabilization in patients with malignant glioma after treatment with liposomal doxorubicin[J]. Cancer, 2001, 92(7): 1936-1942.DOI: 10.1002/1097-0142(20011001)92:7<1936::Aid-cncr1712>3.0.Co;2-h.

69.Thivat E, Casile M, Moreau J, et al. Phase I/II study testing the combination of AGuIX nanoparticles with radiochemotherapy and concomitant temozolomide in patients with newly diagnosed glioblastoma (NANO-GBM trial protocol)[J]. BMC Cancer, 2023, 23(1): 344. DOI: 10.1186/s12885-023-10829-y.

70.Duncan R, Izzo L. Dendrimer biocompatibility and toxicity[J]. Adv Drug Deliv Rev, 2005, 57(15): 2215-2237. DOI: 10.1016/j.addr.2005.09.019.

71.Caruso G, Caffo M, Alafaci C, et al. Could nanoparticle systems have a role in the treatment of cerebral gliomas?[J]. Nanomedicine, 2011, 7(6): 744-752. DOI: 10.1016/j.nano.2011.02.008.

Popular papers
Last 6 months