欢迎访问中南医学期刊社系列期刊网站!

《中国学术期刊影响因子年报》统计源期刊

RCCSE中国核心学术期刊

湖北医学精品期刊

百度学术索引期刊

科技期刊世界影响力指数(WJCI)报告收录期刊

WHO西太平洋地区医学索引(WPRIM)收录期刊

日本科学技术振兴数据库(JST)收录期刊

美国化学文摘社(CAS)数据库收录期刊

首页 在线期刊 2025年 第29卷,第9期 详情

人参化学成分与药理作用研究进展

更新时间:2025年09月27日阅读:40次 下载:5次 下载 手机版

作者: 杜莹 1, 2 邸晴 1, 2 赵相轩 3, 4

作者单位: 1. 辽宁中医药大学中医药创新工程技术中心(沈阳 110847) 2. 辽宁中医药大学中医脏象理论及应用教育部重点实验室(沈阳 110847) 3. 辽宁中医药大学实验动物医学院(沈阳 110847) 4. 辽宁中医药大学药学院(辽宁大连 116600)

关键词: 人参 化学成分 药理作用 人参皂苷

DOI: 10.12173/j.issn.2097-4922.202505059

基金项目: 辽宁中医药大学高层次人才引进计划项目(21601A2177)

引用格式: 杜 莹,邸 晴,赵相轩. 人参化学成分与药理作用研究进展[J]. 药学前沿, 2025, 29(9): 1576-1592. DOI: 10.12173/j.issn.2097-4922.202505059.

DU Ying, DI Qing, ZHAO Xiangxuan. Research progress on chemical composition and pharmacological effects of ginseng[J]. Yaoxue QianYan Zazhi, 2025, 29(9): 1576-1592. DOI: 10.12173/j.issn.2097-4922.202505059.[Article in Chinese]

摘要| Abstract

人参为五加科植物人参的干燥根和根茎,始载于《神农本草经》,是临床常用传统中药,具有抗炎、抗氧化、抗肿瘤、抗过敏及免疫调节等多种药理作用。现代研究表明,人参提取物主要含有人参皂苷、人参多糖、挥发油、聚乙炔、蛋白质及脂肪酸类等多种活性成分。本文通过系统梳理国内外相关文献,对人参的化学成分及药理作用研究进展进行综述,以期为后续深入研究提供参考依据。

全文| Full-text

人参为五加科植物人参(Panax ginseng C.A.Mey)的干燥根和根茎,始载于《神农本草经》,被列为上品。其味甘、微苦,性微温,归脾、肺、心、肾经,具有大补元气、复脉固脱、补脾益肺、生津养血、安神益智等功效[1],素有“百药之首”“百草之王”的美誉。人参含有丰富的化学成分,包括人参皂苷、多糖、蛋白质、挥发油、萜类、醇类、脂肪酸类和氨基酸类等[2],这些成分是其发挥药效的重要物质基础,其中人参皂苷为主要活性成分。现代药理研究表明,人参具有抗炎、抗氧化、抗肿瘤、抗肥胖、抗过敏、抗高血压、抗糖尿病、免疫调节、神经保护及改善记忆等多种药理作用 [3]。本文系统总结了近年来人参化学成分与药理作用的研究进展,以期为相关大健康产品开发和药物研发提供参考依据。

1 化学成分

1.1 皂苷类

人参皂苷是人参的主要功能成分,也是评价人参质量、药用和营养价值的主要指标。人参的传统药用部位是根部,但近年来在人参植株的地上部分(如茎、叶、花、花芽)中也检测出了一些新型人参皂苷,从而大大增加了人参皂苷家族成员的数量。其中,人参皂苷Rb1、Rb2、RC、RD、Re、Rg1占总量的90%以上[4],具有多种药理作用。例如,人参皂苷Rb1具有抗氧化、抗炎和抗细胞凋亡等神经保护作用[5],而人参皂苷Rg1则具有抗氧化、抗衰老、提高免疫力、改善心血管功能等功效[6]。红参和黑参作为人参的两种主要加工产品,是在受控条件下通过蒸制新鲜或生人参根制成,因其独特的化学成分和不同的治疗效果,越来越受到关注。与红参相比,黑参中稀有人参皂苷的含量通常更高 [7]。人参皂苷属于三萜类皂苷,其基本结构相似,均含有甾烷类固醇核。根据结构差异,主要可分为两类:达玛烷型皂苷(四环三萜)和齐墩果酸(oleanolic acid,OA)型皂苷(五环三萜)。根据水解生成的皂苷元不同,达玛烷型又可进一步分为原人参二醇(protopanaxadiol,PPD)型、原人参三醇(protopanaxatriol,PPT)型、奥克梯隆(ocotillol,OT)型和C-17侧链变异(C-17 side chain varied,C17SCV)型4类。其中,PPD型和PPT型人参皂苷还可根据C-20绝对构型的不同分为20(S)-PPD型与20(R)-PPD型,以及20(S)-PPT型与20(R)-PPT型。人参根部人参皂苷相关化合物信息见表1~表4,其骨架结构见图1。

  • 表格1 人参根部皂苷类化学成分(PPD型)
    Table 1.Chemical components of saponins in ginseng(PPD type)
    注:人参皂苷Mc为红参成分;三七皂苷B1为黑参成分。

  • 表格2 人参根部皂苷类化学成分(PPT型)
    Table 2.Chemical components of saponins in ginseng(PPT type)
    注:20(R)人参皂苷Rf为红参成分;拟人参皂苷Rg2为黑参成分。

  • 表格3 人参根部皂苷类化学成分(其他型)
    Table 3.Chemical components of saponins in ginseng (other types)

  • 表格4 人参根部皂苷类化学成分(OT型和OA型)
    Table 4.Chemical components of saponins in ginseng (OT type and OA type)
    注:Spinasaponin A、竹节参皂苷IVa甲酯、竹节参皂苷IVa丁酯为红参成分。

  • 图1 人参皂苷骨架结构
    Figure 1.Skeleton structures of ginsenoside

1.2 多糖类

人参中的总多糖含量约为5%,主要分布于根、茎叶、花和浆果4个部位。研究表明,人参多糖具有抗肿瘤、抗炎、抗氧化、免疫调节及增强机体代谢等多种生物活性,某些药理作用甚至优于人参皂苷[52]。人参多糖主要由人参淀粉样物质和人参果胶组成。其中,淀粉样物质约占80%,以淀粉样葡聚糖为主要成分;而人参果胶约占20%,是人参多糖的主要活性成分,由半乳糖(galactose,Gal)、半乳糖醛酸(galacturonic acid,GalA)、鼠李糖(rhamnose,Rha)和阿拉伯木聚糖(arabinoxylan,AX)等构成的酸性杂多糖混合物。其结构包含鼠李半乳糖醛酸(rhamnogalacturonan,RG)、同型半乳糖醛酸(homogalacturonan,HG)和阿拉伯半乳聚糖(arabinogalactans,AG)3种结构域。目前已鉴定的果胶类型包括酸性多糖(如SA、SB、PA、PB、人参S-ⅠA、人参S-ⅡA、GR-5AUL、GR-5AUH、PG-F2)、水溶性多糖(GR-4)和碱溶性多糖(GRA-3、GRA-4)等。人参多糖的生物学活性可能与其组成成分的种类、含量及结构密切相关。研究发现,从人参多糖中分离的果胶结构(如WGPA-2-RG)中,AG侧链是刺激一氧化氮分泌和淋巴细胞增殖的关键结构。即使通过水解去除阿拉伯糖(arabinose,Ara)和Gal残基,其对巨噬细胞的吞噬促进作用仍保持不变。此外,半乳糖凝集素-3(galactose-specific lectin 3,Gal-3)是一种在多种癌症中过度表达的β-半乳糖苷结合蛋白,与肿瘤进展和转移密切相关。富含RG-Ⅰ片段的RG-Ⅰ-4能有效抑制癌细胞黏附及Gal-3与T细胞的结合。研究还表明,半乳聚糖链长度(≤4个Gal单位)与RG-Ⅰ-4的活性呈正相关,而阿拉伯聚糖侧链的调节作用则取决于其在RG-Ⅰ-4分子中的位置,可能发挥正向或负向调控作用。然而,由于人参多糖分子量极高,采用化学和光谱技术解析其完整结构仍面临巨大挑战,因此其构效关系尚未完全阐明。未来仍需开展深入研究以明确人参多糖的精细结构及其作用机制。人参多糖各级分的单糖组成见表5。

  • 表格5 人参多糖各级分的单糖组成
    Table 5.Single sugar composition of ginseng polysaccharides

1.3 挥发油类

人参挥发油是从人参根茎中提取的挥发性物质,虽然在人参中含量较低(约占0.02%~2.5%),但其药理潜力非常重要。该挥发油的化学成分主要包括萜类、醇类、酮类、醛类、酚类、杂环类和烷烃等,且总挥发油含量随人参生长年龄的增长而增加[71]。研究表明,人参挥发油在保护心血管系统、抑菌、抗衰老、抗血小板、抗炎以及保护神经系统等方面展现出良好的应用前景。人参挥发性成分见表6。

  • 表格6 人参挥发油化学成分
    Table 6.Chemical constituents of volatile oil in ginseng

1.4 脂肪酸类

人参脂肪油是一种棕色粘稠状液体,主要由脂肪酸甘油酯类(约占60%)和游离脂肪酸(约占27%)组成。人参含有丰富的脂肪酸成分,这些成分在人体内发挥着重要的生理作用。值得注意的是,人参中脂肪酸的具体成分和含量会因其部位(如根、茎、叶等)和加工方法的不同而有所差异。人参根中脂肪酸类化合物成分见表7。

  • 表格7 人参脂肪酸化学成分
    Table 7.Chemical constituents of fatty acids in ginseng

1.5 聚乙炔类

人参聚乙炔类成分虽然含量较低且结构不稳定,在人参属化学成分研究中常被忽视,但已有研究表明这类化合物具有显著的抗肿瘤、抗炎、抗菌和神经保护等药理活性[82]。目前从人参根中已分离鉴定出40余种聚乙炔类化合物,根据结构特征可分为直链型、环氧型和糖苷类三大类。其中,高人参炔醇和高人参环氧炔醇被证实具有乙酰胆碱酯酶抑制活性,而人参环氧炔醇和人参炔醇均能抑制肿瘤细胞增殖并促进其凋亡[83]。此外,研究人员还从野山参中分离得到一种新型聚炔类化合物——人参炔氧苷A,进一步丰富了人参聚乙炔类成分的多样性[84]。这些发现凸显了人参聚乙炔类成分在药用开发中的重要潜力。

1.6 蛋白质类

人参中的主要蛋白质是一种存在于根部的28  kD蛋白质,与植物RNA酶及RNA酶样蛋白具有高度序列同源性。根据功能差异,目前已报道的人参蛋白可分为五大类:类RNA酶蛋白、核糖核酸酶、皂苷合成相关酶、几丁质样蛋白和木聚糖酶[85]。研究表明,这些蛋白质在人参抗真菌、抗病毒、皂苷生物合成、细胞增殖调控以及转录活性调节等生理过程中发挥着重要作用[86]。

1.7 其他

人参的化学成分十分丰富,除主要活性成分外,还含有肽类、甾体类、黄酮类、有机酸类、生物碱类、微量元素及维生素等多种化合物。其中,一些特殊氨基酸具有显著生物活性:γ-氨基丁酸具有降压作用,三七氨酸表现出止血功效,而精氨酸果糖苷和精氨酸双糖苷则被证实具有延缓衰老的作用。这些多样的化学成分共同构成了人参广泛的药理活性基础。

2 药理作用

人参含有独特的生物活性成分,具有广泛的药理作用和多重保护机制。现代医学研究表明,人参对人体多个系统均具有显著功效:其能调节免疫系统功能,改善心血管系统健康,平衡内分泌系统,增强呼吸系统能力,并对中枢神经系统产生积极影响。这些多靶点的作用特点使得人参在临床应用中展现出重要的医疗价值。

2.1 抗糖尿病

人参作为我国传统治疗“消渴”症的重要药物,现代研究证实其确实具有抗糖尿病功效。人参皂苷被认为是发挥降糖作用的关键活性成分,其中稀有人参皂苷(如Rg3、Rg5、Rh1、Rh2、Rk1、Rk2、CK等)因其显著的药理活性而备受关注。研究表明,PPD型人参皂苷Rb1能显著改善Ⅱ型糖尿病小鼠的胰岛素敏感性和高血糖症状 [87];而PPT型人参皂苷Rg1则通过改善胰岛素抵抗、调节血糖血脂和肝功能,显示出治疗Ⅱ型糖尿病合并脂肪肝的潜力[88]。

在作用机制方面,人参皂苷通过多种途径发挥降糖作用:Rg1和Re分别通过腺苷酸活化蛋白激酶(AMP-activated protein kinase,AMPK)通路和过氧化物酶体增殖激活受体-γ(peroxisome proliferator activated receptor-γ,PPARγ)途径促进葡萄糖转运蛋白-4(glucose transporter 4,GLUT4)表达,增强葡萄糖摄取[89-90];韩国红参则通过调控线粒体解偶联蛋白2(uncoupling protein 2,UCP2)、聚腺苷酸二磷酸核糖聚合酶(poly ADP-ribose polymerse,PARP)和蛋白酪氨酸磷酸酶1B(protein tyrosine phosphatase 1B,PTP1B)等靶点改善胰岛素分泌和敏感性[91]。此外,人参多糖和人参皂苷Rg1均能通过提高超氧化物歧化酶(superoxide dismutase,SOD)活性、降低丙二醛(malondialdehyde,MDA)水平来减轻糖尿病模型中的氧化应激损伤[92-93]。这些研究从分子水平揭示了人参及其活性成分治疗糖尿病及其并发症的多靶点作用机制,为其临床应用提供了科学依据。

2.2 抗呼吸道感染

大量临床试验表明,人参能有效减少呼吸道感染症状,降低反复感冒和流感的发生率。研究发现,人参对流感病毒、呼吸道合胞病毒、人鼻病毒及冠状病毒均具有抑制作用[94-95],其抗菌机制通过阻断细菌生长途径间接杀灭细菌,从而保护宿主免受侵袭[96]。人参的抗炎作用涉及多重机制,包括反聚量感应、抑制病原体诱导的血凝、阻止DNA突变以及调节免疫功能等。Lee等[97]的研究证实,红参提取物能显著提高甲型流感病毒感染后人肺上皮细胞的存活率,并通过降低白细胞介素(interleukin,IL)-6、IL-8等促炎基因表达,干扰病毒诱导的活性氧生成来发挥抗炎作用。有研究显示,人参能靶向刺激炎症小体增强免疫应答[98],同时通过诱导抗病毒干扰素-γ(interferon-γ,IFN-γ)显著降低肺部病毒载量[99]。此外,人参还能有效改善血栓形成、凝血功能异常和血小板过度聚集等并发症[100]。

2.3 对中枢神经系统的影响

人参皂苷对大脑具有广泛的神经调节作用。近年研究表明,人参皂苷凭借其抗炎和抗氧化活性,在脑卒中、创伤性脑损伤、多发性硬化症、阿尔茨海默病和帕金森病等中枢神经系统疾病中展现出治疗潜力。其中,新发现的活性成分Gintonin能高亲和力激活G蛋白偶联溶血磷脂酸受体1(lysophosphatidic acid receptor 1,LPAR1),通过促进神经递质释放和增强中枢突触可塑性发挥神经保护作用[101]。

大量研究证实,人参提取物中的人参总皂苷(ginseng total saponins,GTS)及其单体成分(如Rg1、Rb1、Rh2等)均具有显著抗抑郁效应。Kang等[102]采用脂多糖(lipopolysaccharide,LPS)诱导的神经炎症型抑郁模型发现,GTS不仅能逆转LPS诱导的抑郁样行为,还可降低小鼠海马区促炎因子[IL-1β、IL-6、肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)]水平,抑制全身炎症反应。在机制研究方面,Zhu等[103]通过蔗糖偏好和强迫游泳实验证实,长期给予人参皂苷Rg1可改善抑郁模型大鼠行为表现,其作用与前额叶皮质环磷腺苷效应元件结合蛋白(cAMP-response element binding protein,CREB)磷酸化水平上调及神经营养因子表达增加相关。Wang等[104]则发现,人参皂苷Rb1通过miR-134介导的脑源性神经营养因子(brain-derived neurotrophic factor,BDNF)信号通路增强海马突触可塑性,从而缓解慢性轻度应激诱发的抑郁症状。此外,人参皂苷Rh2对妊娠期弓形虫感染母鼠的子代抑郁具有干预作用,其机制涉及抑制高迁移率族蛋白B1(high mobility group box 1 protein,HMGB1)/Toll样受体4(Toll Like receptor 4,TLR4)/核因子κB(nuclear factor-κB,NF-κB)通路以减轻小胶质细胞过度激活[105]。这些研究共同揭示了人参皂苷通过多靶点、多通路调控神经炎症和突触可塑性,从而发挥抗抑郁效应的分子基础。

2.4 抗肿瘤作用

人参的抗肿瘤活性主要归功于其核心成分人参皂苷、人参多糖及部分人参蛋白。其中,人参皂苷(如Rg3、Rh1、Rh2、CK等)通过双重途径发挥抗肿瘤作用:既能激活肿瘤细胞内源性及外源性凋亡通路,又可抑制肿瘤细胞增殖与迁移 [106],这种既“扶正固本”又精准干预肿瘤发生机制的特性,使其在抗肿瘤新药研发中极具潜力。人参多糖则展现出独特的化疗协同效应,不仅能增强肿瘤对化疗药物的敏感性,还可有效缓解化疗引起的毒副作用,使其成为理想的化疗增敏剂。值得注意的是,最新研究[107]揭示人参多糖可通过调节肠道菌群代谢——增加戊酸生成并降低犬尿氨酸/色氨酸(kynurenine/tryptophan,Kyn/Trp)比值,从而显著增强PD-1单抗的疗效,其机制涉及CD8+ T细胞活化增加和调节性T细胞减少,这一发现为中药联合免疫治疗非小细胞肺癌提供了新策略。此外,人参蛋白也表现出明确的抗肿瘤活性,可抑制人喉癌细胞Hep-2和小鼠黑色素瘤B16细胞株的增殖,并在过氧化氢协同下诱导人神经母细胞瘤SH-SY5Y细胞凋亡[108- 109],进一步拓宽了人参抗肿瘤作用的成分谱系。

2.5 免疫调节作用

人参皂苷、人参多糖及人参蛋白均具有显著的免疫调节功能,通过多靶点、多途径协同调控机体免疫系统。其中,人参多糖表现出独特的双向免疫调节特性:一方面,低分子量人参多糖可通过抑制磷脂酰肌醇3激酶(phosphatidylinositol 3-kinase,PI3K)/蛋白激酶B(protein kinase B,AKT)和TLRs/NF-κB信号通路,增强RAW264.7细胞活力并减少炎症因子释放,从而有效缓解自身免疫性肝炎[110];另一方面,人参酸性多糖能调控CD4+ T细胞和CD11b+巨噬细胞向脊髓的浸润,减轻实验性过敏性脑脊髓炎的轴突损伤,展现免疫负向调控作用[111]。人参蛋白则通过增强T细胞功能、提升单核巨噬细胞吞噬能力(表现为吞噬指数增加、肝SOD含量升高而MDA降低),显著改善迟发性超敏反应小鼠的免疫功能,并延长其应激存活时间 [112]。值得注意的是,小分子人参寡肽不仅能增强巨噬细胞吞噬功能、自然杀伤细胞活性和Th细胞分泌,全面激活先天性与适应性免疫应答,还对苯并芘诱导的A549细胞损伤具有保护作用[113]。在分子机制层面,人参多糖中的鼠李糖基半乳糖-Ⅰ型多糖可通过激活巨噬细胞表面TLRs,进而调控下游丝裂原活化蛋白激酶(mitogen-activated protein kinases,MAPKs)信号通路,影响巨噬细胞的增殖、分化与凋亡过程[114],这些发现为人参免疫调节作用的临床应用提供了重要理论依据。

2.6 心血管系统的保护作用

人参所含的酚酸、皂苷、黄酮及生物碱等活性成分具有显著的心血管保护作用,包括抗心律失常、心肌保护、改善心脏血流动力学及防治心肌缺血再灌注损伤等多重功效。其作用机制呈现多靶点特征:20(S)-人参皂苷Rg3通过激活PPARγ抑制血管平滑肌细胞增殖迁移,增强斑块稳定性[115];而人参皂苷Rb1则通过促进IL-4和IL-13分泌,激活信号转导及转录激活蛋白6(signal transducer and activator of transcription 6,STAT6)信号通路诱导M2型巨噬细胞极化,减少泡沫细胞脂质沉积,从而稳定动脉粥样硬化斑块[116]。在血管内皮保护方面,人参酚酸通过激活PI3K/AKT/ 内皮型一氧化氮合酶(endothelial nitric oxide synthase,eNOS)信号通路,抑制棕榈酸诱导的内皮素-1过表达和脂质蓄积,显著改善内皮细胞功能[117]。此外,人参挥发油的主要活性成分人参炔醇可通过激活核因子E2相关因子2(nuclear factor erythroid-derived factor 2-related factor 2,Nrf2)/抗氧化反应元件(antioxidant response element,ARE)抗氧化通路,有效减轻心肌缺血再灌注损伤[118]。这些发现揭示了人参多组分、多通路协同保护心血管的独特优势,虽然现有研究已阐明部分分子机制,但更深入的药理作用解析和临床转化研究将为人参在心血管疾病治疗领域的应用开辟新前景。

3 结语

人参作为我国传统中医药宝库中的瑰宝,其重要价值正日益受到社会各界的广泛关注。现代研究表明,人参含有多种复杂的活性成分,具有广泛的生物活性和多系统的药理作用。近年来,随着人工智能、生物信息学、计算机辅助药物设计等前沿技术,以及基因组学、蛋白质组学等多组学技术的快速发展,为人参防治各类疾病的分子机制研究提供了新的技术手段和研究思路。运用这些现代科学技术深入揭示人参的作用机制,仍是当前科研工作者需要重点探索的研究方向。特别是通过整合AI技术,可以实现中药药效物质基础研究和作用靶标发现的智能化、精准化和高效化,这不仅将显著加快人参创新药物的研发进程,更能为传统人参复方的现代化研究提供强有力的技术支撑。相信通过多学科的交叉融合与协同创新,人参这一传统名贵药材必将在人类健康事业中发挥更加重要的作用。

参考文献| References

1.中国药典2020年版. 一部[S]. 2020: 8.

2.宋齐. 人参化学成分和药理作用研究进展[J]. 人参研究, 2017, 29(2): 47-54. [Song Q. Research progress on chemical constituents of Panax ginseng and their pharmacological effects[J]. Renshen Yanjiu, 2017, 29(2): 47-54.] DOI: 10.19403/j.cnki.1671-1521.2017.02.013.

3.Zhang H, Abid S, Ahn JC, et al. Characteristics of Panax ginseng cultivars in Korea and China[J]. Molecules, 2020, 25(11): 2635. DOI: 10.3390/molecules25112635.

4.杨岩涛, 肖佳妹, 杨岩, 等. 基于上皮间质转化的人参活性成分抗肿瘤作用的研究进展[J]. 中草药, 2021, 52(16): 5052-5061. [Yang YT, Xiao JM, Yang Y, et al. Research progress on antitumor effects of active components from Panax ginseng based on epithelial interstitial transformation[J]. Chinese Traditional and Herbal Drugs, 2021, 52(16): 5052-5061.] DOI: 10.7501/j.issn.0253-2670.2021.16.030.

5.Ni XC, Wang HF, Cai YY, et al. Ginsenoside Rb1 inhibits astrocyte activation and promotes transfer of astrocytic mitochondria to neurons against ischemi cstroke[J]. Redox Biol, 2022, 54: 102363. DOI: 10.1016/j.redox.2022.102363.

6.胡娟娟, 汪芮羽, 韩跃威, 等. 基于指纹图谱和网络药理学的人参玫瑰饮质量标志物预测分析[J]. 药学前沿, 2025, 29(4), 551-559. [Hu JJ, Wang RY, Han YW, et al. Predictive analysis of quality markers of ginseng rose drink based on fingerprinting and network pharmacology[J]. Frontiers in Pharmaceutical Sciences, 2025, 29(4): 551-559.] DOI: 10.12173/j.issn.2097-4922.202411012.

7.Sun BS, Xu MY, Li Z, et al. UPLC-Q-TOF-MS/MS analysis for steaming times-dependent profiling of steamed Panax quinquefolius and its ginsenosides transformations induced by repetitious steaming[J]. J Ginseng Res, 2012, 36(3): 277-290. DOI: 10.5142/jgr.2012.36.3.277.

8.Lee JW, Choi BR, Kim YC, et al. Comprehensive profiling and quantification of ginsenosides in the root, stem, leaf, and berry of Panax ginseng by UPLC-QTOF/MS[J]. Molecules, 2017, 22(12): 2147.DOI: 10.3390/molecules22122147.

9.Zhu GY, Li YW, Hau DK, et al. Acylated protopanaxadiol-type ginsenosides from the root of Panax ginseng[J]. Chem Biodivers, 2011, 8(10): 1853-1863. DOI: 10.1002/cbdv.201000196.

10.Diao M, Chen Y, Meng L, et al. Biotransformation approach to produce rare ginsenosides F1, compound Mc1, and Rd2 from major ginsenosides[J]. Arch Microbiol, 2024, 206(4): 176. DOI: 10.1007/s00203-024-03893-w.

11.Siddiqi MH, Siddiqi MZ, Ahn S, et al. Ginseng saponins and the treatment of osteoporosis:mini literature review[J]. J Ginseng Res, 2013, 37(3): 261-268. DOI: 10.5142/jgr.2013.37.261.

12.朱海林. 野山参化学成分及抗慢性阻塞性肺疾病活性的研究[D]. 长春: 吉林大学, 2020. DOI: 10.27162/d.cnki.gjlin.2020. 000694.

13.周琪乐, 徐嵬, 杨秀伟. 中国红参化学成分研究[J]. 中国中药杂志, 2016, 41(2): 233-249. [Zhou QL, Xu W, Yang XW. Chemical constituents of Chinese red ginseng[J]. China Journal of Chinese Materia Medica, 2016, 41(2), 233-249.] DOI: 10.4268/cjcmm20160214.

14.Yang WZ, Ye M, Qiao X, et al. A strategy for efficient discovery of new natural compounds by integrating orthogonal column chromatography and liquid chromatography/mass spectrometry analysis: its application in Panax ginseng, Panax quinquefolium and Panax notoginseng to characterize 437 potential new ginsenosides[J]. Anal Chim Acta, 2012, 739: 56-66. DOI: 10.1016/j.aca.2012.06.017.

15.Zhou J, Zhang J, Jing P, et al. Ginseng in white and red processed forms: ginsenosides and cardiac side effects[J]. Food Sci Nutr, 2023, 12(3): 1857-1868. DOI: 10.1002/fsn3.3879.

16.Hou M, Wang R, Zhao S, et al. Ginsenosides in Panax genus and their biosynthesis[J]. Acta Pharm Sin B, 2021, 11(7): 1813-1834. DOI: 10.1016/j.apsb.2020.12.017.

17.Ruan CC, Liu Z, Li X, et al. Isolation and characterization of a new ginsenoside from the fresh root of Panax ginseng[J]. Molecules, 2010, 15(4): 2319-2325. DOI: 10.3390/molecules15042319.

18.Chen W, Balan P, Popovich DG. Comparison of ginsenoside components of various tissues of New Zealand forest-grown Asian ginseng (Panax ginseng) and American ginseng (Panax Quinquefolium L.)[J]. Biomolecules, 2020, 10(3): 372. DOI: 10.3390/biom10030372.

19.孙光芝, 李向高, 刘志, 等. 人参根中丙二酰基三七人参皂苷-R4的分离及其结构表征[J]. 高等学校化学学报, 2007, 28(7): 1316-1318. [Sun GZ, Li XG, Liu Z, et al. Isolation and structure characterization of malonyl-notoginsenoside-R4 from the root of Panax ginseng[J]. Chemical Journal of Chinese Universities, 2007, 28(7): 1316-1318.] DOI: 10.3321/j.issn:0251-0790.2007.07.047.

20.Sun H, Ma LJ, Wan JB, et al. Preparative separation of gypenoside XVII, ginsenoside Rd2,and notoginsenosides Fe and Fd from Panax notoginseng leaves by countercurrent chromatography and orthogonality evaluation for their separation[J]. J Sep Sci, 2021, 44(15): 2996-3003. DOI: 10.1002/jssc.202100078.

21.Wang HP, Wang ZJ, Du J, et al. Comprehensive identification of ginsenosides in the roots and rhizomes of Panax ginseng based on their molecular features-oriented precursor ions selection and targeted MS/MS analysis[J]. Molecules, 2023, 28(3): 941. DOI: 10.3390/molecules28030941.

22.Pan J, Zheng W, Pang X, et al. Comprehensive investigation on ginsenosides in different parts of a garden-cultivated ginseng root and rhizome[J]. Molecules, 2021, 26(6): 1696. DOI: 10.3390/molecules26061696.

23.Lee DG, Lee J, Yang S, et al. Identification of dammarane-type triterpenoid saponins from the root of Panax ginseng[J]. Nat Prod Sci, 2015, 21(2): 111-121. https://www.nstl.gov.cn/paper_detail.html?id=028f59153ca8728484109d4f5e154f0f.

24.Lee DG, Lee AY, Kim KT, et al. Novel dammarane-type triterpene saponins from Panax ginseng root[J]. Chem Pharm Bull (Tokyo), 2015, 63(11): 927-934. DOI: 10.1248/cpb.c15-00302.

25.Zhao XT, Dou DQ, Qu Y, et al. Structure elucidation and NMR spectral assignments of one new dammarane-type triterpenoid saponin from black ginseng[J]. J Asian Nat Prod Res, 2024, 26(5): 636-643. DOI: 10.1080/10286020.2023.2253153.

26.Zhu H, Lin H, Tan J, et al. UPLC-QTOF/MS-based nontargeted metabolomic analysis of mountain-and garden-cultivated ginseng of different ages in Northeast China[J]. Molecules, 2018, 24(1): 33. DOI: 10.3390/molecules24010033.

27.Wang C, Yu J, Guo Y, et al. Separation and purification of ginsenosides and flavonoids in from the leaves and stems of Panax quinquefolium by high-speed countercurrent chromatography and online-storage inner-recycling countercurrent chromatography[J]. J Sep Sci, 2025, 48(2): e70073. DOI: 10.1002/jssc.70073.

28.Piao X, Zhang H, Kang JP, et al. Advances in saponin diversity of Panax ginseng[J]. Molecules, 2020, 25(15): 3452. DOI: 10.3390/molecules25153452.

29.牛雪妮, 罗文, 吕重宁, 等. 野山参中1个新的聚炔类化合物[J]. 中草药, 2021, 52(1): 23-27. [Niu XN, Luo W, Lyu  CN, et al. A new polyacetylene from wild ginseng[J]. Chinese Traditional and Herbal Drugs, 2021, 52(1): 23-27.] DOI: 10.7501/j.issn.0253-2670.2021.01.004.

30.Wang HP, Zhang YB, Yang XW, et al. Rapid characterization of ginsenosides in the roots and rhizomes of Panax ginseng by UPLC-DAD-QTOF-MS/MS and simultaneous determination of 19 ginsenosides by HPLC-ESI-MS[J]. J Ginseng Res, 2016, 40(4): 382-394. DOI: 10.1016/j.jgr.2015.12.001.

31.Wang YH, Wu YT, Cao HF, et al. Determination of 46 ginsenosides in different processed ginseng products by dispersive solid phase extraction combined with ultra-high performance liquid chromatography-tandem mass spectrometry[J]. Food Sci, 2023, 44(18): 305-315. DOI: 10.7506/spkx1002-6630-20221016-147.

32.左甜甜, 李威威, 李雪, 等. 人参中1个新的齐墩果酸型皂苷[J]. 中草药, 2020, 51(14): 3623-3632. [Zuo TT, Li WW, Li  X, et al. A new oleanolic acid-type saponin from roots of Panax ginseng[J]. Chinese Traditional and Herbal Drugs, 2020, 51(14): 3623-3632.] DOI: 10.7501/j.issn.0253-2670.2020.14.003.

33.王洪平, 杨鑫宝, 杨秀伟, 等. 吉林人参根和根茎的化学成分研究[J]. 中国中药杂志, 2013, 38(17): 2807-2817. [Wang HP, Yang XB, Yang XW, et al. Chemical constituents from roots and rhizomes of Panax ginseng cultivated in Jilin province[J]. China Journal of Chinese Materia Medical, 2013, 38(17): 2807-2817.] DOI: 10.4268/cjcmm20131714.

34.Lee SM. Three hydroxylated ginsenosides from heat treatmented ginseng[J]. Korean J Pharmacognosy, 2020, 51(4): 255-263. DOI: 10.1007/s10600-013-0769-8.

35.吕重宁, 路金才. 人参皂苷在不同商品人参中的分布研究进展 [J]. 中草药, 2021, 52(17): 5329-5338. [Lyu CN, Lu JC. Research progress on the distribution of ginsenosides in different commercial ginseng[J]. Chinese Traditional and Herbal Drugs, 2021, 52(17): 5329-5338.] DOI: 10.7501/j.issn.0253-2670.2021.17.025.

36.Cho JG, Lee DY, Shrestha S, et al. Three new ginsenosides from the heat-processed roots of Panax ginseng[J]. Chem Nat Compd, 2013, 49(5): 882-887.] DOI: 10.1007/s10600-013-0769-8.

37.Dou DQ, Hou WB, Chen YJ. Studies on the characteristic constituents of Chinese ginseng and American ginseng[J]. Planta Medica, 1998, 64(6): 585-586. DOI: 10.1055/s-2006-957526.

38.Lee DG, Lee J, Cho IH, et al. Ginsenoside Rg12, a new dammarane-type triterpene saponin from Panax ginseng root[J]. J ginseng Res, 2017, 41(4): 531-533. DOI: 10.1016/j.jgr.2016.10.002.

39.Bai H, Wang S, Liu J, et al. Localization of ginsenosides in Panax ginseng with different age by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry imaging[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2016, 1026: 263-271. DOI: 10.1016/j.jchromb.2015.09.024.

40.Yang WZ, Hu Y, Wu WY, et al. Saponins in the genus Panax L.(Araliaceae): a systematic review of their chemical diversity[J]. Phytochemistry, 2014, 106: 7-24. DOI: 10.1016/j.phytochem.2014.07.012.

41.Park IH, Kim NY, Han SB, et al. Three new dammarane glycosides from heat processed ginseng[J]. Arch Pharm Res, 2002, 25(4): 428-432. DOI: 10.1007/BF02976595.

42.Lee MY, Seo HS, Singh D, et al. Unraveling dynamic metabolomes underlying different maturation stages of berries harvested from Panax ginseng[J]. J Ginseng Res, 2020, 44(3): 413-423. DOI: 10.1016/j.jgr.2019.02.002.

43.Niu X, Fan X, Lv C, et al. Two new dammarane-type ginsenosides from Panax ginseng[J]. Nat Prod Res, 2023, 37(7): 1116-1121. DOI: 10.1080/14786419.2021.1991338.

44.Park JD, Lee YH, Kim SI. Ginsenoside Rf2, a new dammarane glycoside from Korean red ginseng (Panax ginseng)[J]. Arch Pharm Res, 1998, 21(5): 615-617. DOI: 10.1007/BF02975384.

45.Xu XF, Cheng XL, Lin QH, et al. Identification of mountain-cultivated ginseng and cultivated ginseng using UPLC/oa-TOF MSE with a multivariate statistical sample-profiling strategy[J]. J ginseng Res, 2016, 40(4): 344-350. DOI: 10.1016/j.jgr.2015.11.001.

46.陈相波. 人参皂苷Rh7和Rd2通过调控长链非编码RNA抑制非小细胞肺癌细胞生长功能的机制研究[D]. 长春: 东北师范大学, 2021, DOI: 10.27011/d.cnki.gdbsu.2021.001697.

47.Shen R, Cao X, Laval S, et al. Synthesis of ocotillol-type ginsenosides[J]. J Org Chem, 2016, 81(21): 10279-10294. DOI: 10.1021/acs.joc.6b01265.

48.魏春雁. 越南人参的化学成分和药理作用[J]. 特产研究, 2001, 23(1): 57-61. [Wei CY. Chemical composition and pharmacological effects of Panax vietnamensis Haet Grushv.[J]. Special Wild Economic Animal and Plant Research, 2001, 23(1): 57-61.] DOI: 10.16720/j.cnki.tcyj.2001.01.018.

49.Zhang HJ, Lu ZZ, Tan GT, et al. Polyacetylene ginsenoside-Ro, a novel triterpene saponin from Panax ginseng[J]. Tetrahedron Lett, 2002, 43(6): 973-977. DOI: 10.1002/chin.200223196.

50.徐凤莲, 张启云, 姜丽, 等. UHPLC-Q-TOF/MS法分析红参醇提液中化学成分[J]. 中药新药与临床药理, 2015, 26(4): 529-534. [Xu FL, Zhang QY, Jiang L, et al. Study on chemical constituents of radix ginseng destillata alcohol extract by UHPLC-Q-TOF/MS[J]. Traditional Chinese Drug Research and Clinical Pharmacology, 2016, 26(4): 529-534.] DOI: 10.3969/j.issn.1003-9783.2015.04.024.

51.富力, 李向高, 杨守仁. 人参中齐墩果酸型新皂甙的分离鉴定[J]. 吉林农业大学学报, 1998, 20(2): 33-37, 45. [Fu L, Li XG, Yang SR. Isolation and identification of oleanolic acid neosaponins in ginseng[J]. Journal of Jilin Agricultural University, 1998, 20(2): 33-37, 45.] DOI: 10.13327/j.jjlau.1998.02.009.

52.Zhao B, Lyu C, Lu J. Natural occurring polysaccharides from Panax ginseng C. A. Meyer: a review of isolation,structures,and bioactivities[J]. Int J Biol Macromol, 2019, 133: 324-336. DOI: 10.1016/j.ijbiomac.2019.03.229.

53.Zhao JL, Zhang M, Zhou HL. Microwave-assisted extraction, purification, partial characterization, and bioactivity of polysaccharides from Panax ginseng[J]. Molecules, 2019, 24(8): 1605. DOI: 10.3390/molecules24081605.

54.Jia H, Zhao B, Zhang F, et al. Extraction, structural characterization, and anti-hepatocellular carcinoma activity of polysaccharides from Panax ginseng Meyer[J]. Front Oncol, 2021, 11: 785455. DOI: 10.3389/fonc.2021.785455.

55.Gu J, Zhang H, Wen C, et al. Purification, characterization, antioxidant and immunological activity of polysaccharide from Sagittaria sagittifolia L.[J]. Food Res Int, 2020, 136: 109345. DOI: 10.1016/j.foodres.2020.109345.

56.Ji L, Jie Z, Ying X, et al. Structural characterization of alkali-soluble polysaccharides from Panax ginseng C. A. Meyer[J]. R Soc Open Sci, 2018, 5(3): 171644. DOI: 10.1098/rsos.171644.

57.Kim SJ, Shin MS, Kim M, et al. Characterization of an immune-enhancing polysaccharide fraction isolated from heat-processed ginseng derived from Panax ginseng C.A. Meyer[J]. Appl Sci (2076-3417), 2021, 11(22). DOI: 10.3390/app112210835.

58.Li L, Thakur K, Cao YY, et al. Anticancerous potential of polysaccharides sequentially extracted from Polygonatum cyrtonema Hua in human cervical cancer Hela cells[J].Int J Biol Macromol, 2020, 148: 843-850. DOI: 10.1016/j.ijbiomac.2020.01.223.

59.Zhao B, Wang XY, Luo W, et al. Isolation and structuralelucidation of a low-molecular-weight polysaccharide from the roots of Panaxginseng C.A. Meyer[J]. Nat Prod Res, 2022, 36(2): 493-500. DOI: 10.1080/14786419.2020.1788025.

60.Kim HM, Song Y, Hyun GH, et al. Characterization and antioxidant activity determination of neutral and acidic polysaccharides from Panax ginseng C.A. Meyer[J]. Molecules, 2020, 25(4): 791. DOI: 10.3390/molecules25040791.

61.Liu S, Liu F, Wang T, et al. Polysaccharides extracted from Panax ginseng C.A. Mey enhance complement component 4 biosynthesis in human hepatocytes[J]. Front Pharmacol, 2021, 12: 734394. DOI: 10.3389/fphar.2021.734394.

62.Luo D, Fang B. Structural identification of ginseng polysaccharides and testing of their antioxidant activities[J]. Carbohydr Polym, 2008, 72: 376-381. DOI: 10.1016/J.CARBPOL.2007.09.006.

63.Zhang X, Yu L, Bi HT, et al. Total fractionation and characterization of the water-soluble polysaccharides isolated from Panax ginseng C. A. Meyer[J]. Carbohydr Polym, 2009, 77: 544-522. DOI: 10.1016/j.carbpol.2009.01.034.

64.Tomoda M, Takeda K, Shimizu N, et al. Characterization of two acidic polysaccharides having immunological activities from the root of Panax ginseng[J]. Biol Pharm Bull, 1993, 16(1): 22-25. DOI: 10.1248/bpb.16.22.

65.Gao QP, Kiyohara H, Cyong JC, et al. Chemical properties and anti-complementary activities of polysaccharide fractions from roots and leaves of Panax ginseng[J]. Planta Med, 1989, 55(1): 9-12. DOI: 10.1055/s-2006-961765.

66.Fan YY, Cheng HR, Li SS, et al. Relationship of the inhibition of cell migration with the structure of ginseng pectic polysaccharides[J]. Carbohydr Polym, 2010, 81(2): 340-347. DOI: 10.1016/j.carbpol.2010.02.028.

67.Yu L, Zhang X, Li SS, et al. Rhamnogalacturonan I domains from ginseng pectin[J]. Carbohydr Polym, 2010, 79(4): 811-817. DOI: 10.1016/j.carbpol.2009.08.028.

68.Tian M H, Wei M, Zhang L P, et al. Structure analysis of pectin SB1-1 from the root of Panax ginseng[J]. Chem Res Chin Univ, 2005, 21(3): 306-308. https://www.cnki.com.cn/Article/CJFDTotal-GHYJ200503012.htm.

69.Tomoda M, Hirabayashi K, Shimizu N, et al. Characterization of two novel polysaccharides having immunological activities from the root of Panax ginseng[J]. Biol Pharm Bull, 1993, 16(11): 1087-1090. DOI: 10.1248/bpb.16.1087.

70.Lee A, Jae-Chan A, Na K, et al. In vitro bifidogenic effect of nondigestible oligosaccharides isolated from red ginseng marc[J]. J Microbiol Biotechnol, 2001, 11(5): 858-862. https://www.semanticscholar.org/paper/In-vitro-bifidogenic-effect-of-nondigestible-from-Jae-Chan-Na/510fe366fb844e4f2ac63ad8e6fdc34d8484ff8e.

71.徐静, 贾力, 赵余庆. 人参的化学成分与人参产品的质量评价[J]. 药物评价研究, 2011, 34(3): 199-203. [Xu J, Jia  L, Zhao  YQ. Constituents of ginseng and quality evaluation of ginseng products[J]. Drug Evaluation Research, 2011, 34(3): 199-203.] DOI: 10.7501/j.issn.0253-6376.

72.陈英杰, 黄帧, 李念平, 等. 人参挥发油的研究[J]. 中国中药杂志, 1982, 7(4): 29-31. [Chen YJ, Huang Z, Li NP, et al. Research on the volatile oil of ginseng[J]. China Journal of Chinese Materia Medica, 1982, 7(4): 29-31.] https://www.cnki.com.cn/Article/CJFDTotal-ZGZY198204024.htm.

73.佟鹤芳, 薛健, 童燕玲. GC-MS法测定人参和西洋参挥发性成分[J]. 中医药学报, 2013, 41(1): 49-54. [Tong HF, Xue  J, Tong YL. Analysis of volatile components from ginseng and american ginseng for identification by GC-MS[J]. Acta Chinese Medicine and Pharmacology, 2013, 41(1): 49-54.] DOI: 10.19664/j.cnki.1002-2392.2013.01.018.

74.王庆喜. 人参有效成分糖类、挥发油及无机元素的研究[D].长春: 吉林大学, 2016. https://cdmd.cnki.com.cn/article/cdmd-10183-1016093930.htm.

75.丁增伟. 人参根中挥发油含量变化规律的研究[D]. 长春: 吉林农业大学, 2008. DOI: 10.7666/d.y1511772.

76.赵花, 魏建华, 徐涛, 等. 人参挥发油成分的GC-MS分析 [J]. 人参研究, 2014, 26(3): 45-48. [Zhao H, Wei JH, Xu T, et al. Analysis of volatile oil components of Panax ginseng by GC-MS[J]. Renshen Yanjiu, 2014, 26(3): 45-48.] DOI: 10.19403/j.cnki.1671-1521.2014.03.014.

77.张维玲, 杨悦武, 孙艳, 等. 人参挥发油化学成分比较研究[J]. 中药材, 2019, 42(4), 813-817. [Zhang WL, Yang YW, Sun Y, et al. Comparative study on chemical constituents of ginseng volatile oil[J]. Journal of Chinese Medicinal Materials, 2019, 42(4): 813-817.] DOI: 10.13863/j.issn1001-4454.2019.04.023.

78.杨艳辉, 杨兴斌, 王燕, 等. 人参脂肪酸和挥发油成分的GC-MS分析[J]. 陕西师范大学学报(自然科学版), 2007, 35(1): 77-81. [Yang YH, Yang XB, Wang Y, et al. Analysis of fatty acid and volatile oil components in Panax ginseng C.A. Mey by GC/MS[J]. Journal of Shaanxi Normal University (Natural Science Edition), 2007, 35(1): 77-81.] DOI: 10.15983/j.cnki.jsnu.2007.01.019.

79.徐小平. 刺人参苷的药学研究[D]. 长春: 吉林大学, 2009. https://cdmd.cnki.com.cn/Article/CDMD-10183-2009095170.htm.

80.张宏桂, 阎吉昌, 吴广宣, 等. 长白人参中脂肪酸成分的研究[J]. 白求恩医科大学学报, 1994, 20(4): 365. [Zhang HG, Yan JC, Wu GX, et al. Study on the Fatty Acid Components in Changbai Mountain ginseng[J]. Journal of Norman Bethune Medical University, 1994, 20(4): 365.] DOI: 10.13481/j.1671-587x.1994.04.027.

81.陈文学, 赵岩, 杨琦, 等. 基于GC-MS法的不同品种人参中脂肪酸成分及含量分析[J]. 安徽农业科学, 2010, 38(20): 10634-10636. [Chen WX, Zhao Y, Yang Q, et al. Analysis of fatty acid components in different strains Panax ginseng C. A. Mey by GC-MS[J]. Journal of Anhui Agricultural Sciences, 2010, 38(20): 10634-10636.] DOI: 10.13989/j.cnki.0517-6611.2010.20.157.

82.杨佩儒, 宋廉, 张礼荣, 等. 人参炔醇联合吉西他滨对胰腺癌干细胞分化及活性的影响[J]. 江苏大学学报: 医学版, 2019, 29(3): 221-225. [Yang PR, Song L, Zhang LR, et al. Combined effect of panaxynol and gemcitabine on pancreatic cancer stem cell differentiation and proliferation[J]. Journal of Jiangsu University (Medicine Edition), 2019, 29(3): 221-225.] DOI: 10.13312/j.issn.1671-7783.y180260.

83.Murata K, Iida D, Ueno Y, et al. Novel polyacetylene derivatives and their inhibitory activities on acetylcholinesterase obtained from Panax ginseng roots[J]. J Nat Med, 2017, 71(1): 114-122. DOI: 10.1007/s11418-016-1036-7.

84.徐念智, 李兵. 中药中多炔类化学成分药理研究进展[J]. 中医药导报, 2021, 27(9): 137-141, 163. [Xu NZ, Li B. Research progress on pharmacology of polyacetylenes in traditional Chinese medicine[J]. Chinese Journal of Traditional Chinese Medicine, 2021, 27(9): 137-141, 163.] DOI: 10.13862/j.cnki.cn43-1446/r.2021.09.036.

85.王逸, 鲍勇刚, 贾韦国, 等. 人参蛋白研究进展[J]. 中草药, 2013, 44(19): 2782-2786. [Wang Y, Bao YG, Jia WG, et al. Research progress on ginseng proteins[J]. Chinese Traditional and Herbal Drugs, 2013, 44(19): 2782-2786.] DOI: 10.7501/j.issn.0253-2670.2013.19.028.

86.Gong L, Gao J, Xu T, et al. Transcriptome analysis of field-grown asian ginseng provides clues to environmental conditions and developmental mechanisms related to red skin root syndrome[J]. Ind Crop Prod, 2020, 153: 8. DOI: 10.1016/j.indcrop.2020.112486.

87.Song B, Ding L, Zhang H, et al. Ginsenoside Rb1 increases insulin sensitivity through suppressing 11β-hydroxysteroid dehydrogenase type I[J]. Am J Transl Res, 2017, 9(3): 1049-1057. https://pubmed.ncbi.nlm.nih.gov/28386332/.

88.Tian W, Chen L, Zhang L, et al. Effects of ginsenoside Rg1 on glucose metabolism and liver injury in streptozotocin-induced type 2 diabetic rats[J]. Genet Mol Res, 2017, 16(1). DOI: 10.4238/gmr16019463.

89.Lee HM, Lee OH, Kim KJ, et al. Ginsenoside Rg1 promotes glucose uptake through activated AMPK pathway in insulin-resistant muscle cells[J]. Phytother Res, 2012, 26(7): 1017-1022. DOI: 10.1002/ptr.3686.

90.Gao Y, Yang MF, Su YP, et al. Ginsenoside Re reduces insulin resistance through activation of PPAR-γ pathway and inhibition of TNF-α production[J]. J Ethnopharmacol, 2013, 147(2): 509-516. DOI: 10.1016/j.jep.2013.03.057.

91.Kim HY, Kim K. Regulation of signaling molecules associated with insulin action, insulin secretion and pancreatic β-cell mass in the hypoglycemic effects of Korean red ginseng in Goto-Kakizaki rats[J]. J Ethnopharmacol, 2012, 142(1): 53-58. DOI: 10.1016/j.jep.2012.04.012.

92.Sun C, Chen Y, Li X, et al. Anti-hyperglycemic and anti-oxidative activities of ginseng polysaccharides in STZ-induced diabetic mice[J]. Food Funct, 2014, 5(5): 845-848. DOI: 10.1039/c3fo60326a.

93.Yu HT, Zhen J, Pang B, et al. Ginsenoside Rg1 ameliorates oxidative stress and myocardial apoptosis in streptozotocin-induced diabetic rats[J]. J Zhejiang Univ Sci B, 2015, 16(5): 344-354. DOI: 10.1631/jzus.B1400204.

94.Dong W, Farooqui A, Leon AJ, et al. Inhibition of influenza A virus infection by ginsenosides[J]. PLoS One, 2017, 12(2): e0171936. DOI: 10.1371/journal.pone.0171936.

95.Lee WS, Rhee DK. Corona-Cov-2 (COVID-19) and ginseng: comparison of possible use in COVID-19 and influenza[J]. J Ginseng Res, 2021, 45(4): 535-537. DOI: 10.1016/j.jgr.2020.12.005.

96.Kim YR, Yang CS. Protective roles of ginseng against bacterial infection[J]. Microb Cell, 2018, 5(11): 472-481. DOI: 10.15698/mic2018.11.654.

97.Lee JS, Hwang HS, Ko EJ, et al. Immunomodulatory activity of red ginseng against influenza A virus infection[J]. Nutrients, 2014, 6(2): 517-529. DOI: 10.3390/nu6020517.

98.Yi YS. Potential benefits of ginseng against COVID-19 by targeting inflammasomes[J]. J ginseng Res, 2022, 46(6): 722-730. DOI: 10.1016/j.jgr.2022.03.008.

99.Seo SH. Ginseng protects ACE2-transgenic mice from SARS-CoV-2 infection[J]. Front Biosci (Landmark Ed), 2022, 27(6): 180. DOI: 10.31083/j.fbl2706180.

100.Lee YY, Quah Y, Shin JH, et al. COVID-19 and Panax ginseng: targeting platelet aggregation,thrombosis and the coagulation pathway[J]. J Ginseng Res, 2022, 46(2): 175-182. DOI: 10.1016/j.jgr.2022.01.002.

101.Park H, Kim S, Rhee J, et al. Synaptic enhancement induced by gintonin via lysophosphatidic acid receptor activation in central synapses[J]. J Neurophysiol, 2015, 113(5): 1493-1500. DOI: 10.1152/jn.00667.2014.

102.Kang A, Hao H, Zheng X, et al. Peripheral anti-inflammatory effects explain the ginsenosides paradox between poor brain distribution and anti-depression efficacy[J]. J Neuroinflammation, 2011, 8: 100. DOI: 10.1186/1742-2094-8-100.

103.Zhu X, Gao R, Liu Z, et al. Ginsenoside Rg1 reverses stress-induced depression-like behaviours and brain-derived neurotrophic factor expression within the prefrontal cortex[J]. Eur J Neurosci, 2016, 44(2): 1878-1885. DOI: 10.1111/ejn.13255.

104.Wang G, An T, Lei C, et al. Antidepressant-like effect of ginsenoside Rb1 on potentiating synaptic plasticity via the miR-134-mediated BDNF signaling pathway in a mouse model of chronic stress-induced depression[J]. J Ginseng Res, 2022, 46(3): 376-386. DOI: 10.1016/j.jgr.2021.03.005.

105.Xu X, Lu YN, Cheng JH, et al. Ginsenoside Rh2 reduces depression in offspring of mice with maternal toxoplasma infection during pregnancy by inhibiting microglial activation via the HMGB1/TLR4/NF-κB signaling pathway[J]. J Ginseng Res, 2022, 46(1): 62-70. DOI: 10.1016/j.jgr.2021.04.003.

106.Jin Y, Huynh DTN, Heo KS. Ginsenoside Rh1 inhibits tumor growth in MDA-MB-231 breast cancer cells via mitochondrial ROS and ER stress-mediated signaling pathway[J]. Arch Pharm Res, 2022, 45(3): 174-184. DOI: 10.1007/s12272-022-01377-3.

107.Huang J, Liu D, Wang Y, et al. Ginseng polysaccharides alter the gut microbiota and kynurenine/tryptophan ratio,potentiating the antitumour effect of antiprogrammed cell death 1/programmed cell death ligand 1 (anti-PD-1/PD-L1) immunotherapy[J]. Gut, 2022, 71(4): 734-745. DOI: 10.1136/gutjnl-2020-321031.

108.张丽轩, 王思明, 王敏, 等. 人参水溶性总蛋白对小鼠黑色素瘤细胞B16的增殖抑制及对Bcl-2/Bax表达的影响[J]. 科学技术与工程, 2017, 17(33): 64-68. [Zhang LX, Wang SM, Wang  M, et al. Proliferation inhibition of mouse melanoma cell line B16 bywater-soluble total protein and the effect on Bcl-2/Bax[J]. Science Technology and Engineering, 2017, 17(33): 64-68.] DOI: 10.3969/j.issn.1671-1815.2017.33.009.

109.程璐, 李红艳, 孔亮, 等. 人参蛋白协同H2O2诱导SH-SY5Y细胞氧化损伤[J]. 中国医院药学杂志, 2016, 36(9): 707-710. [Cheng L, Li HY, Kong L, et al. Oxidative injury in SH-SY5Y cells induced synergistically by ginseng protein and H2O2[J]. Chinese Journal of Hospital Pharmacy, 2016, 36(9): 707-710.] DOI: 10.13286/j.cnki.chinhosppharmacyj.2016.09.02.

110.Qi X, Lu X, Han Y, et al. Ginseng polysaccharide reduces autoimmune hepatitis inflammatory response by inhibiting PI3K/AKT and TLRs/NF-κB signaling pathways[J]. Phytomedicine, 2023, 116: 154859. DOI: 10.1016/j.phymed.2023.154859.

111.Bing SJ, Ha D, Hwang I, et al. Protective effects on central nervous system by acidic polysaccharide of Panax ginseng in relapse-remitting experimental autoimmune encephalomyelitis-induced SJL/J mice[J]. Am J Chin Med, 2016, 44(6): 1099-1110. DOI: 10.1142/S0192415X16500610.

112.李红艳, 赵雨, 孙晓迪, 等. 人参蛋白对小鼠免疫功能影响的研究[J]. 亚太传统医药, 2010, 6(1): 14-16. [Li HY, Zhao Y, Sun  XD, et al. Effect of ginseng protein on immune function in mice[J].Asia-Pacific Traditional Medicine, 2010, 6(1): 14-16.] DOI: CNKI:SUN:YTCT.0.2010-01-008.

113.He LX, Ren JW, Liu R, et al. Ginseng (Panax ginseng Meyer) oligopeptides regulate innate and adaptive immune responses in mice via increased macrophage phagocytosis capacity, NK cell activity and Th cells secretion[J]. Food Funct, 2017, 8(10): 3523-3532. DOI: 10.1039/c7fo00957g.

114.Son SU, Lee HW, Park JH, et al. Identification of intracellular activation mechanism of rhamnogalacturonan-I type polysaccharide purified from Panax ginseng leaves in macrophages and roles of component sugar chains on activity[J]. J Nat Med, 2024, 78(2): 328-341. DOI: 10.1007/s11418-023-01768-w.

115.Guo M, Xiao J, Sheng X, et al. Ginsenoside Rg3 mitigates atherosclerosis progression in diabetic ApoE-/- mice by skewing macrophages to the M2 phenotype[J]. Front Pharmacol, 2018, 9: 464. DOI: 10.3389/fphar.2018.00464.

116.Zhang X, Liu MH, Qiao L, et al. Ginsenoside Rb1 enhances atherosclerotic plaque stability by skewing macrophages to the M2 phenotype[J]. J Cell Mol Med, 2018, 22(1): 409-416. DOI: 10.1111/jcmm.13329.

117.Chen X, Yao F, Song J, et al. Protective effects of phenolic acid extract from ginseng on vascular endothelial cell injury induced by palmitate via activation of PI3K/Akt/eNOS pathway[J]. J Food Sci, 2020, 85(3): 576-581. DOI: 10.1111/1750-3841.15071.

118.伏秋, 马丹丹, 佟岩, 等. 人参炔醇通过Nrf2/ARE通路调控小鼠心肌缺血再灌注损伤[J]. 解剖科学进展, 2021, 27(2): 143-146. [Fu Q, Ma DD, Tong Y, et al. Panaxynol regulates myocardial ischemia-reperfusion injuryin mice through Nrf2/ARE pathway[J]. Progress of Anatomical Sciences, 2021, 27(2): 143-146.] DOI: 10.16695/j.cnki.1006-2947.2021.02.004.