Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 27,2024 No.3 Detail

Research progress of the signaling function and related diseases of follicle stimulating hormone and its receptors

Published on Apr. 12, 2024Total Views: 1589 times Total Downloads: 817 times Download Mobile

Author: WEN Miao 1, 3 YU Sisi 2, 3 WU Yanlin 3

Affiliation: 1. School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China 2. School of Life Sciences and Biopharmaceutical, Shenyang Pharmaceutical University, Shenyang 117004, China 3. National Institutes for Food and Drug Control, Beijing 102629, China

Keywords: Follicle stimulating hormone Follicle stimulating hormone receptor Biased signal Receptor isomers Cancer Signaling Research progress

DOI: 10.12173/j.issn.1008-049X.202401143

Reference: WEN Miao, YU Sisi, WU Yanlin.Research progress of the signaling function and related diseases of follicle stimulating hormone and its receptors[J].Zhongguo Yaoshi Zazhi,2024, 27(3):501-509.DOI: 10.12173/j.issn.1008-049X.202401143.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Follicle stimulating hormone (FSH) is a gonadotropin secreted by gonadotropin cells in the anterior pituitary gland, which binds to follicle stimulating hormone receptor (FSHR) to stimulate follicle generation and sperm production. The lack of FSH or FSHR can lead to reduced sperm count in males and infertility and amenorrhea in females. With the continuous deepening of research, the FSH/FSHR signaling pathways have also been constantly improved. In addition to the classic cyclic adenosine monophosphate dependent signaling pathway, there are also β-inhibitory protein dependent pathways and other pathways. There is a balance between different conformations of FSHR, and the bias of conformations can affect its signal transduction. The categories of biased signals are also being further studied. Meanwhile, FSH/FSHR can also provide new research ideas for the treatment and prevention of assisted reproduction, gonadal diseases, and even cancer. This article focuses on a review of the latest research progress on the relevant theories of FSH/FSHR and its association with diseases.

Full-text
Please download the PDF version to read the full text: download
References

1.McDonald R, Sadler C, Kumar TR. Gain-of-function genetic models to study FSH action[J]. Front Endocrinol, 2019, 10: 28. DOI: 10.3389/fendo.2019.00028.

2.Das N, Kumar TR. Molecular regulation of follicle-stimulating hormone synthesis, secretion and action[J]. J Mol Endocrinol, 2018, 60(3): R131-R155. DOI: 10.1530/JME-17-0308.

3.Wang HQ, Zhang WD, Yuan B, et al. Advances in the regulation of mammalian follicle-stimulating hormone secretion[J]. Animals, 2021, 11(4): 1134. DOI: 10.3390/ani11041134.

4.Thompson IR, Kaiser UB. GnRH pulse frequency-dependent differential regulation of LH and FSH gene expression[J]. Mol Cell Endocrinol, 2014, 385(1-2): 28-35. DOI: 10.1016/j.mce.2013.09.012.

5.Bhartiya D, Patel H, Kaushik A, et al. Endogenous, tissue-resident stem/progenitor cells in gonads and bone marrow express FSHR and respond to FSH via FSHR-3[J]. J Ovarian Res, 2021, 14(1): 145. DOI: 10.1186/s13048-021-00883-0.

6.Bhartiya D, Patel H. An overview of FSH-FSHR biology and explaining the existing conundrums[J]. Ovarian Res, 2021, 14(1): 144. DOI: 10.1186/s13048-021-00880-3.

7.Coss D. Commentary on the recent FSH collection: known knowns and known unknowns[J]. Endocrinology, 2020, 161(1): bqz035. DOI: 10.1210/endocr/bqz035.

8.Jonas KC, Rivero-Müller A, Huhtaniemi IT, et al. G protein-coupled receptor transactivation: from molecules to mice[J]. Methods Cell Biol 2013, 117: 433-450. DOI: 10.1016/B978-0-12-408143-7.00023-2.

9.Papadimitriou K, Kountourakis P, Kottorou AE, et al. Follicle-stimulating hormone receptor (FSHR): a promising tool in oncology?[J]. Mol Diagn Ther, 2016, 20(6): 523-530. DOI: 10.1007/s40291-016-0218-z.

10.Stilley JA, Guan R, Duffy DM, et al. Signaling through FSH receptors on human umbilical vein endothelial cells promotes angiogenesis[J]. J Clin Endocrinol Metab, 2014, 99(5): E813-E820. DOI: 10.1210/jc.2013-3186.

11.Ponikwicka-Tyszko D, Chrusciel M, Stelmaszewska J, et al. Functional expression of FSH receptor in endometriotic lesions[J]. J Clin Endocrinol Metab, 2016, 101(7): 2905-2914. DOI: 10.1210/jc.2016-1014.

12.Sun L, Peng Y, Sharrow AC, et al. FSH directly regulates bone mass[J]. Cell, 2006, 125(2): 247-260. DOI: 10.1016/j.cell.2006.01.051.

13.Zaidi M, Lizneva D, Kim SM, et al. FSH, bone mass, body fat, and biological aging[J]. Endocrinology, 2018, 159(10): 3503-3514. DOI: 10.1210/en.2018-00601.

14.Lizneva D, Rahimova A, Kim SM, et al. FSH beyond fertility[J]. Front Endocrinol, 2019, 10: 136. DOI: 10.3389/fendo.2019.00136.

15.Haldar S, Agrawal H, Saha S, et al. Overview of follicle stimulating hormone and its receptors in reproduction and in stem cells and cancer stem cells[J]. Int J Biol Sci, 2022, 18(2): 675-692. DOI: 10.7150/ijbs.63721.

16.Liu X, Xu J, Wei D, et al. Associations of serum follicle-stimulating hormone and luteinizing hormone levels with fat and lean mass during menopausal transition[J]. Obes Facts, 2023, 16(2): 184-193. DOI: 10.1159/000528317.

17.Sharma D, Bhartiya D. Stem cells in adult mice ovaries form germ cell nests, undergo meiosis, neo-oogenesis and follicle assembly on regular basis during estrus cycle[J]. Stem Cell Rev Rep, 2021, 17(5): 1695-1711. DOI: 10.1007/s12015-021-10237-4.

18.Szymańska K, Kałafut J, Przybyszewska A, et al. FSHR trans-activation and oligomerization[J]. Front Endocrinol, 2018, 9: 760. DOI: 10.3389/fendo.2018.00760.

19.Banerjee AA, Joseph S, Mahale SD. From cell surface to signalling and back: the life of the mammalian FSH receptor[J]. FEBS J, 2021, 288(8): 2673-2696. DOI: 10.1111/febs.15649.

20.Burford NT, Watson J, Bertekap R, et al. Strategies for the identification of allosteric modulators of G-protein- coupled receptors[J]. Biochem Pharmacol, 2011, 81(6): 691-702. DOI: 10.1016/j.bcp.2010.12.012.

21.Lazzaretti C, Simoni M, Casarini L, et al. Allosteric modulation of gonadotropin receptors[J]. Front Endocrinol, 2023, 14: 1179079. DOI: 10.3389/fendo.2023.1179079.

22.Arey BJ, Yanofsky SD, Pérez MC, et al. Differing pharmacological activities of thiazolidinone analogs at the FSH receptor[J]. Biochem Biophys Res Commun, 2008, 368(3): 723-728. DOI: 10.1016/j.bbrc.2008.01.119.

23.van Koppen CJ, Verbost PM, van de Lagemaat R, et al. Signaling of an allosteric, nanomolar potent, low molecular weight agonist for the follicle-stimulating hormone receptor[J]. Biochem Pharmacol, 2013, 85(8): 1162-1170. DOI: 10.1016/j.bcp.2013.02.001.

24.Dias JA, Bonnet B, Weaver BA, et al. A negative allosteric modulator demonstrates biased antagonism of the follicle stimulating hormone receptor[J]. Mol Cell Endocrinol, 2011, 333(2): 143-150. DOI: 10.1016/j.mce.2010.12.023.

25.Landomiel F, Pascali FD, Raynaud P, et al. Biased signaling and allosteric modulation at the FSHR[J]. Front Endocrinol, 2019, 10: 148. DOI: 10.3389/fendo.2019.00148.

26.Wide L, Eriksson K. Dynamic changes in glycosylation and glycan composition of serum FSH and LH during natural ovarian stimulation[J]. Ups J Med Sci, 2013, 118(3): 153-164. DOI: 10.3109/03009734.2013.782081.

27.Johnson GP, Onabanjo CGA, Hardy K, et al. Follicle-stimulating hormone glycosylation variants distinctly modulate pre-antral follicle growth and survival[J]. Endocrinology, 2022, 163(12): bqac161. DOI: 10.1210/endocr/bqac161.

28.Agwuegbo UT, Colley E, Albert AP, et al. Differential FSH glycosylation modulates FSHR oligomerization and subsequent cAMP signaling[J]. Front Endocrinol, 2021,  12: 765727. DOI: 10.3389/fendo.2021.765727.

29.Converse A, Liu Z, Patel JC, et al. Oocyte quality is enhanced by hypoglycosylated FSH through increased cell-to-cell interaction during mouse follicle development[J]. Development, 2023, 150(22): dev202170. DOI: 10.1242/dev.202170.

30.Wehbi V, Decourtye J, Piketty V, et al. Selective modulation of follicle-stimulating hormone signaling pathways with enhancing equine chorionic gonadotropin/antibody immune complexes[J]. Endocrinology, 2010, 151(6): 2788-2799. DOI: 10.1210/en.2009-0892.

31.Allen LA, Achermann JC, Pakarinen P, et al. A novel loss of function mutation in exon 10 of the FSH receptor gene causing hypergonadotrophic hypogonadism: clinical and molecular characteristics[J]. Hum Reprod, 2003, 18(2): 251-256. DOI: 10.1093/humrep/deg046.

32.Tranchant T, Durand G, Gauthier C, et al. Preferential β-arrestin signalling at low receptor density revealed by functional characterization of the human FSH receptor A189V mutation[J]. Mol Cell Endocrinol, 2011, 331(1): 109-118. DOI: 10.1016/j.mce.2010.08.016.

33.Malbon CC. G proteins in development[J]. Nat Rev Mol Cell Biol, 2005, 6(9): 689-701. DOI: 10.1038/nrm1716.

34.Ulloa-Aguirre A, Crépieux P, Poupon A, et al. Novel pathways in gonadotropin receptor signaling and biased agonism[J]. Rev Endocr Metab Dis, 2011, 12(4): 259-274. DOI: 10.1007/s11154-011-9176-2.

35.Simoni M, Gromoll J, Nieschlag E. The follicle-stimulating hormone receptor: biochemistry, molecular biology, physiology, and pathophysiology[J]. Endocr Rev, 1997, 18(6): 739-773. DOI: 10.1210/edrv.18.6.0320.

36.Ulloa-Aguirre A, Reiter E, Crépieux P. FSH receptor signaling: complexity of interactions and signal diversity[J]. Endocrinology, 2018, 159(8): 3020-3035. DOI: 10.1210/en.2018-00452.

37.Gonzalez GA, Montminy MR. Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133[J]. Cell, 1989, 59(4): 675-680. DOI: 10.1016/0092-8674(89)90013-5.

38.Gloaguen P. Mapping the follicle-stimulating hormone-induced signaling networks[J]. Front Endocrinol, 2011, 2: 45. DOI: 10.3389/fendo.2011.00045.

39.Arey BJ, López FJ. Are circulating gonadotropin isoforms naturally occurring biased agonists? Basic and therapeutic implications[J]. Rev Endocr Metab Dis, 2011, 12(4): 275-288. DOI: 10.1007/s11154-011-9188-y.

40.Kara E, Crépieux P, Gauthier C, et al. A phosphorylation cluster of five serine and threonine residues in the C-terminus of the follicle-stimulating hormone receptor is important for desensitization but not for β-arrestin-mediated ERK activation[J]. Mol Endocrinol, 2006, 20(11): 3014-3026. DOI: 10.1210/me.2006-0098.

41.Troispoux C, Guillou F, Elalouf JM, et al. Involvement of G protein-coupled receptor kinases and arrestins in desensitization to follicle-stimulating hormone action[J]. Mol Endocrinol, 1999, 13(9): 1599-1614. DOI: 10.1210/mend.13.9.0342.

42.Marion S, Robert F, Crepieux P, et al. G protein-coupled receptor kinases and beta arrestins are relocalized and attenuate cyclic 3', 5' -adenosine monophosphate response to follicle-stimulating hormone in rat primary sertoli cells1[J]. Biol Reprod, 2002, 66(1): 70-76. DOI: 10.1095/biolreprod66.1.70.

43.Thomas RM, Nechamen CA, Mazurkiewicz JE, et al. The adapter protein APPL1 links FSH receptor to inositol 1,4,5-trisphosphate production and is implicated in intracellular Ca2+ mobilization[J]. Endocrinology, 2011, 152(4): 1691-1701. DOI: 10.1210/en.2010-1353.

44.Jonas KC, Chen S, Virta M, et al. Temporal reprogramming of calcium signalling via crosstalk of gonadotrophin receptors that associate as functionally asymmetric heteromers[J]. Sci Rep, 2018, 8(1): 2239. DOI: 10.1038/s41598-018-20722-5.

45.Casarini L, Santi D, Simoni M, et al. 'Spare' luteinizing hormone receptors: facts and fiction[J]. Trends Endocrinol Meta, 2018, 29(4): 208-217. DOI: 10.1016/j.tem.2018.01.007.

46.Oduwole OO, Peltoketo H, Huhtaniemi IT. Role of follicle-stimulating hormone in spermatogenesis[J]. Front Endocrinol, 2018, 9: 763. DOI: 10.3389/fendo.2018.00763.

47.Heckert LL. The expression of the follicle-stimulating hormone receptor in spermatogenesis[J]. Recent Prog Horm Res, 2002, 57(1): 129-148. DOI: 10.1210/rp.57.1.129.

48.Kumar TR, Wang Y, Lu N, et al. Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility[J]. Nat Genet, 1997, 15(2): 201-204. DOI: 10.1038/ng0297-201.

49.Richards JS, Pangas SA. The ovary: basic biology and clinical implications[J]. J Clin Invest, 2010, 120(4): 963-972. DOI: 10.1172/JCI41350.

50.Kumar TR, Palapattu G, Wang P, et al. Transgenic models to study gonadotropin function: the role of follicle-stimulating hormone in gonadal growth and tumorigenesis[J]. Mol Endocrinol, 1999, 13(6): 851-865. DOI: 10.1210/mend.13.6.0297.

51.Simoni M, Brigante G, Rochira V, et al. Prospects for FSH treatment of male infertility[J]. J Clini Endocrinol Metab, 2020, 105(7): dgaa243. DOI: 10.1210/clinem/dgaa243.

52.Casarini L, Crépieux P, Reiter E, et al. FSH for the treatment of male infertility[J]. Int J Mol Sci, 2020, 21(7): 2270. DOI: 10.3390/ijms21072270.

53.Practice Committees of the American Society for Reproductive Medicine and Society for Reproductive Endocrinology and Infertility. Use of exogenous gonadotropins for ovulation induction in anovulatory women: a committee opinion[J]. Fertil Steril, 2020, 113(1): 66-70. DOI: 10.1016/j.fertnstert.2019.09.020.

54.Carson SA, Kallen AN. Diagnosis and management of infertility: a review[J]. JAMA, 2021, 326(1): 65-76. DOI: 10.1001/jama.2021.4788.

55.Shu L, Xu Q, Meng Q, et al. Clinical outcomes following long GnRHa ovarian stimulation with highly purified human menopausal gonadotropin plus rFSH or rFSH in patients undergoing in vitro fertilization-embryo transfer: a multi-center randomized controlled trial[J]. Ann Transl Med, 2019, 7(7): 146. DOI: 10.21037/atm.2019.04.16.

56.Laven JSE. Follicle stimulating hormone receptor (FSHR) polymorphisms and polycystic ovary syndrome (PCOS) [J]. Front Endocrinol, 2019, 10: 23. DOI: 10.3389/fendo.2019.00023.

57.Uchida S, Uchida H, Maruyama T, et al. Molecular analysis of a mutated FSH receptor detected in a patient with spontaneous ovarian hyperstimulation syndrome[J]. PLoS One, 2013, 8(9): e75478. DOI: 10.1371/journal.pone.0075478.

58.He WB, Du J, Yang XW, et al. Novel inactivating mutations in the FSH receptor cause premature ovarian insufficiency with resistant ovary syndrome[J]. Reprod Biomed Online, 2019, 38(3): 397-406. DOI: 10.1016/j.rbmo.2018.11.011.

59.Montanelli L, Delbaere A, Di Carlo C, et al. A mutation in the follicle-stimulating hormone receptor as a cause of familial spontaneous ovarian hyperstimulation syndrome[J]. J Clin Endocrinol Metabol, 2004, 89(3): 1255-1258. DOI: 10.1210/jc.2003-031910.

60.Waghu FH, Desai K, Srinivasan S, et al. FSHR antagonists can trigger a PCOS-like state[J]. Syst Biol Reprod Med, 2022, 68(2): 129-137. DOI: 10.1080/19396368.2021.2010837.

61.Stilley JAW, Segaloff DL. FSH actions and pregnancy: looking beyond ovarian FSH receptors[J]. Endocrinology, 2018, 159(12): 4033-4042. DOI: 10.1210/en.2018-00497.

62.Planeix F, Siraj MA, Bidard FC, et al. Endothelial follicle-stimulating hormone receptor expression in invasive breast cancer and vascular remodeling at tumor periphery[J]. J Exp Clin Cancer Res , 2015, 34(1): 12. DOI: 10.1186/s13046-015-0128-7.

63.Cheung J, Lokman NA, Abraham RD, et al. Reduced gonadotrophin receptor expression is associated with a more aggressive ovarian cancer phenotype[J]. Int J Mol Sci, 2020, 22(1): 71. DOI: 10.3390/ijms22010071.

64.Urbanska K, Stashwick C, Poussin M, et al. Follicle-stimulating hormone receptor as a target in the redirected T-cell therapy for cancer[J]. Cancer Immunol Res, 2015, 3(10): 1130-1137. DOI: 10.1158/2326-6066.CIR-15-0047.

65.Perales-Puchalt A, Wojtak K, Duperret EK. Engineered DNA vaccination against follicle-stimulating hormone receptor delays ovarian cancer progression in animal models[J]. Mol Ther, 2019, 27(2): 314-325. DOI: 10.1016/j.ymthe.2018.11.014.

66.Ahmed TA, Ahmed SM, El-Gammal Z, et al. Oocyte aging: the role of cellular and environmental factors and impact on female fertility[J]. Adv Exp Med Biol, 2020, 1247: 109-123. DOI: 10.1007/5584_2019_456.

Popular papers
Last 6 months