Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 27,2024 No.6 Detail

Risk assessment and prediction model for capecitabine-induced chemotherapy-related adverse reactions in colorectal cancer patients

Published on Jul. 02, 2024Total Views: 974 times Total Downloads: 239 times Download Mobile

Author: CHEN Shaobo 1 WU Xutao 2 QIU Wenhui 1 HU Tingting 1

Affiliation: 1. Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China 2. Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China

Keywords: Colorectal cancer Capecitabine Chemotherapy-induced adverse efects Risk prediction model

DOI: 10.12173/j.issn.1008-049X.202404078

Reference: CHEN Shaobo, WU Xutao, QIU Wenhui, HU Tingting.Risk assessment and prediction model for capecitabine-induced chemotherapy-related adverse reactions in colorectal cancer patients[J].Zhongguo Yaoshi Zazhi,2024, 27(6):992-998.DOI: 10.12173/j.issn.1008-049X.202404078.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Objective  To explore the risk factors of chemotherapy-induced adverse reactions (CIAEs) caused by capecitabine in colorectal cancer (CRC) patients and to construct a risk prediction model for CIAEs.

Methods  We retrospectively collected data from postoperative CRC patients treated with capecitabine tablets at our hospital between January 2021 and December 2023. Patients were divided into CIAEs and NCIAEs groups based on the presence or absence of CIAEs. Variable differences were screened using t-tests and chi-square tests. Stepwise multivariate logistic regression was employed to identify independent factors influencing CIAEs in CRC patients. Based on these independent risk factors, a risk prediction model for CIAEs in CRC patients was constructed using R software. The model's predictive ability, calibration, and clinical net benefits were evaluated using receiver operating characteristic (ROC) analysis, calibration curves, and decision curves.

Results  A total of 253 postoperative CRC patients treated with capecitabine were included in this study. Among them, 201 patients developed CIAEs, with nausea and vomiting being the most common (69.96%). Multiple logistic regression results indicated that age [OR=3.018, 95%CI(1.404, 6.487), P=0.005], prognosis nutrition index [OR=0.129, 95%CI(0.06, 0.278), P<0.001], and systematic inflammation index [OR=4.074, 95%CI(1.316, 12.615), P=0.015] were independent risk factors for CIAEs in CRC patients. The constructed risk prediction model demonstrated good predictive ability, calibration, and clinical net benefit.

Conclusion  The risk prediction model for CIAEs can be used for individualized prediction of CIAEs in CRC patients and serves as a simple and practical tool for CIAE prevention and nursing management.

Full-text
Please download the PDF version to read the full text: download
References

1.陈思娇, 邬文君, 郑雅文. 术前口服复合益生菌对结直肠癌根治术后感染性并发症的预防作用[J]. 中国药师, 2023, 26(10): 119-124. [Chen SJ, Wu WJ, Zheng YW. Preoperative oral administration of composite probiotics for the prevention of infectious complications after radical resection of colorectal cancer[J]. China Pharmacist, 2023, 26(10): 119-124.] DOI: 10.12173/j.issn.1008-049X.202310029.

2.文恩辉, 李莹, 王芝莹, 等. 贝伐珠单抗生物类似药与原研药在转移性结直肠癌患者中疗效和安全性的Meta分析[J]. 药物流行病学杂志, 2023, 32(12): 1401-1407. [Wen EH, Li Y, Wang ZY, et al. Meta analysis of the efficacy and safety of bevacizumab biosimilars and original research drugs in patients with metastatic colorectal cancer[J]. Chinese Journal of Pharmacoepidemiology, 2023, 32 (12): 1401-1407.] DOI: 10.19960/j.issn.1005-0698. 202312010.

3.张鑫锋, 张小丽, 王雅静, 等. 肿瘤相关巨噬细胞在结直肠癌中的研究进展[J]. 华西医学, 2022, 37(9): 1414-1418. [Zhang XF, Zhang XL, Wang YJ, et al. Research progress of tumor associated macrophages in colorectal cancer[J]. West China Medical Journal, 2022, 37(9): 1414-1418.] DOI: 10.7507/1002-0179.202108230.

4.安惠霞, 郑心怡, 张翠珍, 等. 结直肠癌靶向及单抗类药物基因组学和不良反应研究的文献计量学分析[J]. 药物流行病学杂志, 2023, 32(9): 1059-1070. [An HX, Zheng XY, Zhang CZ, et al. Bibliometric analysis of genomics and adverse reactions of targeted and monoclonal antibody drugs for colorectal cancer[J]. Chinese Journal of Pharmacoepidemiology, 2023, 32(9): 1059-1070.] DOI: 10.19960/j.issn.1005-0698.202309013.

5.冯祯, 周芳, 胡晗, 等. 五阶梯营养联合CAPEOX化疗应用于结直肠癌术后辅助化疗患者的分析[J]. 数理医药学杂志, 2023, 36(5): 352-357. [Feng Z, Zhou F, Hu H, et al. Analysis of the application of five tiered nutrition combined with CAPEOX chemotherapy in postoperative adjuvant chemotherapy patients with colorectal cancer[J]. Journal of Mathematical Medicine, 2023, 36(5): 352-357.] DOI: 10.12173/j.issn.1004-4337.202303091.

6.Benson AB, Venook AP, Al-Hawary MM, et al. NCCN Guidelines insights: colon cancer, version 2.2018[J]. J Natl Compr Canc Netw, 2018, 16(4): 359-369. DOI: 10.6004/jnccn.2018.0021.

7.Hasegawa Y, Iwata H, Hatanaka M. A case of Stage IV sigmoid colon cancer that achieved long-term survival with oral anticancer drugs[J]. Gan To Kagaku Ryoho, 2014, 41(3): 383-385. https://pubmed.ncbi.nlm.nih.gov/24743289/.

8.Zheng QH, Wu XL, Che XL, et al. Chemotherapy combined with target drugs in the treatment of advanced colorectal cancer: a meta-analysis based on Chinese patients[J]. Indian J Cancer, 2014, 51 Supp l3: e110-112. DOI: 10.4103/0019-509X.154100.

9.李莉, 柯亚妮, 谢杰斌, 等. 基于SEER数据库构建初诊结直肠癌脑转移患者的生存预测模型[J]. 西部医学, 2022, 34 (9): 1361-1365. [Li L, Ke YN, Xie JB, et al. Constructing a survival prediction model for newly diagnosed colorectal cancer patients with brain metastases based on the SEER database[J]. Western Medicine, 2022, 34(9): 1361-1365.] DOI: 10.3969/j.issn.1672-3511. 2022.09.021.

10.Yu Q, Luo H, Hu SL, et al. The survival analysis of rifampicin/multidrug-resistant tuberculosis patients based on the levels of inflammatory biomarkers: a retrospective cohort study[J]. Front Cell Infect Microbiol, 2023, 13: 1118424. DOI: 10.3389/fcimb.2023.1118424.

11.Yu Q, Weng WJ, Luo H, et al. The novel predictive biomarkers for type 2 diabetes mellitus in active pulmonary tuberculosis patients[J]. Infect Drug Resist, 2022, 15: 4529-4539. DOI: 10.2147/IDR.S377465.

12.Miller KK, Gorcey L, McLellan BN. Chemotherapyinduced hand-foot syndrome and nail changes: a review of clinical presentation, etiology, pathogenesis, and management[J]. J Am Acad Dermatol, 2014, 71(4): 787-794. DOI: 10.1016/j.jaad.2014.03.019.

13.Li MM, Chen JN, Deng Y, et al. Risk prediction models based on hematological/body parameters for chemotherapy-induced adverse effects in Chinese colorectal cancer patients[J]. Support Care Cancer, 2021, 29(12): 7931-7947. DOI: 10.1007/s00520-021-06337-z.

14.朱铭钰, 朱静, 方兴超, 等. 预后营养指数与癌症预后的关联研究: 一项伞状评价[J]. 实用预防医学, 2023, 30(10): 1204-1210. [Zhu MY, Zhu J, Fang XC, et al. A study on the correlation between prognostic nutritional index and cancer prognosis: an umbrella evaluation[J]. Practical Preventive Medicine, 2023, 30(10): 1204-1210] DOI: 10.3969/j. issn.1006-3110.2023.10.012.

15.侍科辰,张文斌. 治疗前全身免疫炎症指数对结直肠癌临床病理及预后影响的Meta分析[J]. 检验医学与临床, 2023, 20(14): 2017-2022. [Shi KC, Zhang WB. Meta analysis of the impact of systemic immune inflammation index before treatment on the clinical pathology and prognosis of colorectal cancer[J]. Journal of Laboratory Medicine and Clinical Medicine, 2023, 20(14): 2017-2022] DOI: 10.3969/ji.ssn.1672-9455.2023.14.007.

16.周伟俊. 术前系统免疫-炎症指数与结直肠癌临床病理特征的关系[D]. 吉林延边: 延边大学, 2023. DOI: 10.27439/d.cnki.gybdu.2022.000678.

17.马佳慧. 系统性炎性指标与新辅助乳腺癌患者的相关性分析[D]. 安徽芜湖: 皖南医学院, 2023. DOI: 10.27374/d.cnki.gwnyy.2023.000229.

18.申桂梅. SII-PNI及查尔森共病指数与肺癌围术期严重并发症相关性研究[D]. 乌鲁木齐: 新疆医科大学, 2023. DOI: 10.27433/d.cnki.gxyku.2023.000883.

Popular papers
Last 6 months