Objective To investigate the extraction process of Folium hibisci mutabilis polysaccharides, and to analyze, isolate and purify the monosaccharide composition.
Methods The enzymatic extraction process of Folium hibisci mutabilis polysaccharides was optimized by star point response surface method, and Folium hibisci mutabilis polysaccharides deproteinization was deproteinized by Sevag method and trichloroacetic acid method to screen the optimal deproteinization method. The deproteinized Folium hibisci mutabilis polysaccharides was separated and purified by DEAE-52 cellulose column and Sephadex G-100 glucan gel column. The monosaccharide components of Folium hibisci mutabilis polysaccharides and the purified product were analyzed by 1-phenyl-3-methyl-5-pyrazolone (PMP) precolumn derivatization-high performance liquid chromatography.
Results The optimal extraction process of Folium hibisci mutabilis polysaccharides was as follows: 3 hours of extraction, the liquid to material ratio of 70 ∶ 1, the temperature of 40 ℃, the enzyme dosage of 1.3%, and the yield was 56.42%. The best method for Folium hibisci mutabilis polysaccharides deproteinization was trichloroacetic acid. Folium hibisci mutabilis polysaccharides was mainly composed of six monosaccharides: mannose, rhamnose, glucose, galactose, xylose and fucose, the order of its content was glucose> galactose> xylose>mannose>fucose≈rhamnose, and the total polysaccharide content reached the highest in September. The isolated and purified Folium hibisci mutabilis polysaccharides I contained glucose and galactose with a molar ratio of 9.06 ∶ 1, Folium hibisci mutabilis polysaccharides IIα contained mannose, rhamnose, galactose, xylose and fucose with a molar ratio of 0.23 ∶ 0.15 ∶ 1 ∶ 0.45 ∶ 0.21, and Folium hibisci mutabilis polysaccharides Ⅱb contained only a small amount of fucosse.
Conclusion The optimal extraction process of Folium hibisci mutabilis polysaccharides is stable and feasible, which can provide a theoretical basis for its production. The PMP precolumn derivatization-high performance liquid chromatography method is used to determine the composition of Folium hibisci mutabilis polysaccharides monosaccharides with good stability, accuracy and repeatability, which can be used as a quality control method for Folium hibisci mutabilis polysaccharides. The purification process of Folium hibisci mutabilis polysaccharides is stable and feasible, and can successfully purify homogeneous polysaccharides.
1.中国药典2015年版. 一部[S]. 2015: 64
2.明·李时珍, 著. 朱斐, 王杰, 何国浓, 等, 校注. 本草纲目[M]. 南昌: 二十一世纪出版社, 2014: 249.
3.清·张璐, 著. 本经逢原[M]. 北京: 中医古籍出版社, 2017: 205.
4.清·吴仪洛, 撰. 本草从新[M]. 北京: 中国中医药出版社, 2013: 153.
5.Hu F, Yan Y, Wang CW, et al. Article effect and mechanism of ganoderma lucidum polysaccharides on human fibroblasts and skin wound healing in mice[J]. Chin J Integr Med, 2019, 25(3): 203-209. DOI: 10.1007/s11655-018-3060-9.
6.Zhang C, He Y, Chen Z, et al. Effect of polysaccharides from Bletilla striata on the healing of dermal wounds in mice[J]. Evid Based Complement Alternat Med, 2019, 2019: 9212314. DOI: 10.1155/2019/9212314.
7.Al-Ghazzewi FH, Tester RF. Effect of konjac glucomannan hydrolysates and probiotics on the growth of the skin bacterium Propionibacterium acnes in vitro[J]. Int J Cosmet Sci, 2010, 32(2): 139-142. DOI: 10.1111/j.1468-2494.2009.00555.x.
8.李笑眉. 白芨多糖水凝胶促进糖尿病创面愈合的应用研究[D]. 辽宁大连: 大连医科大学, 2021. DOI: 10.26994/d.cnki.gdlyu.2021.000316.
9.徐燕婷, 李哲明, 范丽娜. 黄芪多糖介导Nrf2-HO-1/NQO1信号通路促进大鼠难愈创面的愈合[J]. 中国现代医生, 2023, 61(21): 39-43, 49. [Xu YT, Li ZM, Fan LN. Huangqi polysaccharide mediates Nrf2-HO-1/NQO1 signaling pathway to promote healing of difficult to heal wounds in rats[J]. Chinese Modern Doctor, 2023, 61(21): 39-43, 49.] DOI: 10.3969/j.issn.1673-9701.2023.21.009.
10.韩凤玉, 闫凤华, 张俊飞, 等. 枸杞多糖促进压疮大鼠皮肤创面愈合的作用机制研究[J]. 宁夏医学杂志, 2023, 45(1): 5. [Han FY, Yan FH, Zhang JF, et al. Mechanism of Lycium barbarum polysaccharides promoting skin wound healing in pressure ulcer rats[J]. Ningxia Medical Journal, 2023, 45(1): 5.] DOI: 10.13621/j.1001-5949.2023.01.0005.
11.韩鹏飞, 马明昊, 迟乃玉, 等. 戴氏虫草多糖的提取工艺优化和抗氧化活性研究[J]. 中国食品添加剂, 2023, 34(4): 150-157. [Han PF, Ma MH Chi NY, et al. Optimization of extraction process and antioxidant activity of polysaccharides from Cordyceps militaris[J]. China Food Additives, 2023, 34(4): 150-157.] DOI: 10.19804/j.issn1006-2513.2023.04.018.
12.张妍, 高敏, 戴映迪, 等. 响应面优化乙二胺四乙酸二钠提取荷叶离褶伞子实体多糖工艺条件[J/OL]. 吉林农业大学学报, 2023-05-12. [Zhang Y, Gao M, Dai YD, et al. Response surface optimization of the extraction process conditions of polysaccharides from the fruiting body of lotus leaves using ethylenediaminetetraacetic acid disodium[J/ OL]. Journal of Jilin Agricultural University, 2023-05-12.] DOI: 10.13327/j.jjlau.2021.1994.
13.王杨, 唐明明, 孙梦莹, 等. 响应面法优化油茶籽多糖提取及其体外抗氧化活性研究[J]. 现代园艺, 2023, 46(13): 56-59. DOI: 10.3969/j.issn.1006-4958.2023.13.019.
14.姜振浩, 朱建星, 张万忠. 响应面法优化结球菊苣多糖的磷酸化修饰工艺[J]. 食品工业科技, 2023, 44(24): 200-206. [Jiang ZH, Zhu JX, Zhang WZ. Optimization of phosphorylation of polysaccharides from Chicory (Cichoricum intybus var. foliosum Hegi) by response surface method[J]. Science and Technology of Food Industry, 2023, 44(24): 200-206.] DOI: 10.13386/j.issn1002-0306.2023020262.
15.高山雪, 王琦, 郭艳芳, 等. 响应面法优化纤维素酶提取草菇中甾醇类化合物的工艺[J]. 菌物研究, 2021, 19(3): 163-169. [Gao SX, Wang Q, Guo YF, et al. Optimization of cellulase extraction process for sterols from shiitake mushrooms using response surface methodology[J]. Microbial Research, 2021, 19(3): 163-169.] DOI: 10.13341/j.jfr.2020.1307.
16.李根. 荷叶多糖的提取、分离纯化、理化性质及生物活性研究[D]. 杭州: 浙江工商大学, 2023. DOI: 10.27462/d.cnki.ghzhc.2023.001027.
17.野津, 张文森, 王知斌, 等. DEAE-52在中药多糖分离纯化中的应用[J]. 化学工程师, 2019, 33(11): 43-45, 22. [Ye J, Zhang WS, Wang ZB, et al. Application of DEAE-52 in the separation and purification of polysaccharides from traditional Chinese medicine[J]. Chemical Engineer, 2019, 33(11): 43-45, 22] DOI: 10.16247/j.cnki.23-1171/tq.20191143.
18.扈瑞平, 杜玲, 敖长金, 等. 沙葱多糖的SephadexG—100凝胶柱纯化和分子量的测定[J]. 科学技术与工程, 2011, 11(12): 2780-2783. [Hu RP, Du L, Ao CJ, et al. Sephadex G-100 gel column purification and molecular weight determination of Allium mongolicum polysaccharide[J]. Science, Technology and Engineering, 2011, 11(12): 2780-2783.] DOI: 10.3969/j.issn.1671-1815. 2011.12.033.
19.王小燕, 郭常润, 常军民, 等. 怀牛膝多糖的柱前衍生化-HPLC指纹图谱建立及单糖成分含量测定[J]. 中国药房, 2021, 32(3): 294-300. [Wang XY, Guo CR, Chang JM, et al. Establishment of pre-column derivatization-HPLC fingerprint and content determination of monosaccharide composition from Achyranthes bidentata polysaccharides[J]. Chinese Pharmacy, 2021, 32(3): 294-300.] DOI: 10.6039/j.issn.1001-0408.2021.03.08.
20.王艺, 叶磊, 胡攀, 等. 芙蓉黄酮类化学成分、药理作用及提取工艺研究进展[J]. 山东化工, 2022, 51(12): 80-86. [Wang Y, Ye L, Hu P, et al. Research progress on the chemical composition, pharmacological effects, and extraction process of flavonoids in Hibiscus syringae[J]. Shandong Chemical Industry, 2022, 51(12): 80-86.] DOI: 10.3969/j.issn.1008-021X.2022.12.022.
21.万静, 陈晓兰, 董娜娜, 等. 芙蓉叶研究进展[J]. 湖北民族大学学报(医学版), 2021, 38(4): 79-82. [Wan J, Chen XL, Dong NN, et al. Research progress on hibiscus leaves[J]. Journal of Hubei University for Nationalities (Medical Edition), 2021, 38(4): 79-82.] DOI: 10.13501/j.cnki.42-1590/r.2021.04.019.
22.张小芳. 芙蓉叶中化学成分的研究[D] .西安: 西北大学, 2021. DOI: 10.27405/d.cnki.gxbdu.2021.000408.
23.王艺, 黄李璐, 冯丽萍, 等. 芙蓉花的化学成分研究[J]. 中药材, 2022, 45(5): 1106-1109. [Wang Y, Huang LL, Feng LP, et al. Study on chemical components of Hibiscus mutabilis[J]. Chinese Herbal Medicine, 2022, 45(5): 1106-1109.] DOI: 10.13863/j.issn1001-4454.2022.05.016.
24.王艺, 冯丽萍, 黄李璐, 等. UPLC-Q-Orbitrap HRMS技术快速鉴定木芙蓉花化学成分[J]. 天然产物研究与开发, 2021, 33(12): 2042-2052. [Wang Y, Feng LP, Huang LL, et al. UPLC-Q-Orbitrap HRMS technology for rapid identification of chemical components in hibiscus flowers[J]. Research and Development of Natural Products, 2021, 33(12): 2042-2052.] DOI: 10.16333/j.1001-6880.2021.12.008.
25.Song Y, Zeng R, Hu L, et al. In vivo wound healing and in vitro antioxidant activities of Bletilla striata phenolic extracts[J]. Biomed Pharmacother, 2017, 93: 451-461. DOI: 10.1016/j.biopha.2017.06.079.
26.喻明军, 向敏, 夏勇, 等. 铁皮石斛多糖的提取工艺及对生物活性影响研究进展[J]. 农产品加工, 2021(9): 79-82, 88. [Yu MJ, Xiang M, Xia Y, et al. Advances in extraction technology polysaccharide from Dendrobium officinale and its effect on biological activity[J]. Farm Products Processing, 2021(9): 79-82, 88.] DOI: 10.16693/j.cnki.1671-9646(X).2021.05.020.
27.林彦. 黄芩茎叶多糖的提取分离纯化、体外抗氧化与醒酒代谢指标测定及其结构鉴定[D]. 河北承德: 承德医学院, 2024. DOI: 10.27691/d.cnki.gcdyx.2024.000245.
28.魏夏森, 余赛男, 张哲一, 等. β-1,3-葡聚糖酶的结构、功能及应用研究进展[J]. 食品科学, 2023, 44(15): 269-277. [Wei XS, Yu SN, Zhang ZY, et al. Research progress on structure, function and application of β-1,3-glucanases[J]. Food Science, 2023, 44(15): 269-277.] DOI: 10.7506/spkx1002-6630-20220820-235.