Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 29,2025 No.3 Detail

Mechanism of Salvia miltiorrhiza against non-small cell lung cancer based on network pharmacology

Published on Apr. 03, 2025Total Views: 176 times Total Downloads: 30 times Download Mobile

Author: TAO Gan 1, 2, 3 GUO Xiuli 1, 2, 3 HE Fajian 1, 2, 3 WU Qiuji 1, 2, 3 ZHONG Yahua 1, 2, 3

Affiliation: 1. Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China 2. Hubei Key Laboratory of Tumor Biological Behavior, Zhongnan Hospital of Wuhan University, Wuhan 430071, China 3. Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan 430071, China

Keywords: Salvia miltiorrhiza Traditional Chinese medicine Network pharmacology Molecular docking Non-small cell lung cancer

DOI: 10.12173/j.issn.2097-4922.202501023

Reference: TAO Gan, GUO Xiuli, HE Fajian, WU Qiuji, ZHONG Yahua. Mechanism of Salvia miltiorrhiza against non-small cell lung cancer based on network pharmacology[J]. Yaoxue QianYan Zazhi, 2025, 29(3): 361-373.DOI: 10.12173/j.issn.2097-4922.202501023.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Objective  To explore the mechanism of Salvia miltiorrhiza in treating non-small cell lung cancer (NSCLC) using network pharmacology, bioinformatics, molecular docking, and molecular dynamics simulations.

Methods The main active components of Salvia miltiorrhiza were screened from the TCMSP database. Target prediction for these active components was performed using the SwissTargetPrediction and PharmMapper databases. Lung cancer-related targets were obtained from the GeneCards, DisGeNET, and OMIM databases. The intersection of Salvia miltiorrhiza targets and lung cancer targets were identified as the Salvia miltiorrhiza-lung cancer targets. Differential analysis was conducted on TCGA-LUAD&LUSC and GSE159857 datasets to obtain common differentially expressed genes. The intersection of these genes with the Salvia miltiorrhiza-lung cancer targets was used to identify the core targets of Salvia miltiorrhiza in treating NSCLC. GO and KEGG enrichment analyses were performed to investigate the involved biological processes and signaling pathways. The protein-protein interaction  network of the core targets was constructed using the STRING database and Cytoscape 3.10.0 software. Molecular docking verification of the core targets was performed using AutoDock Tools 1.5.6 and AutoDock Vina 1.2.0. Molecular dynamics simulations of the molecular docking complexes were conducted using Gromacs 2022.4 software.

Results In this study, 26 active components of Salvia miltiorrhiza were screened and 61 core targets of Salvia miltiorrhiza against NSCLC were identified. The active components of Salvia miltiorrhiza exert therapeutic effects on NSCLC through biological processes such as cell cycle regulation, extracellular matrix remodeling, oxidative stress response, and metabolic reprogramming, as well as through signaling pathways including p53, PARP, AMPK, and NF-κB. These components inhibit the malignant progression of NSCLC by directly targeting CDK4, AURKB, PLK1, CDK1, and TYMS. Among these, Tanshinone IIA exhibited the strongest binding affinity with CDK4, forming a stable complex.

Conclusion  Salvia miltiorrhiza exerts therapeutic effects on NSCLC through the synergistic regulation of multiple biological processes, signaling pathways, and targets.

Full-text
Please download the PDF version to read the full text: download
References

1.Chen P, Liu Y, Wen Y, et al. Non-small cell lung cancer in China[J]. Cancer Commun (Lond), 2022, 42(10): 937-970. DOI: 10.1002/cac2.12359.

2.Otano I, Ucero AC, Zugazagoitia J, et al. At the crossroads of immunotherapy for oncogene-addicted subsets of NSCLC[J]. Nat Rev Clin Oncol, 2023, 20(3): 143-159. DOI: 10.1038/s41571-022-00718-x.

3.刘海波, 徐峻, 彭勇, 等. 丹参活血化瘀活性成分的靶标[J]. 物理化学学报, 2010, 26(1): 199-205. [Liu HB, Xu J, Peng Y, et al. Targets of Danshen's active components for activating blood circulation activities[J]. Acta Physico-Chimica Sinica, 2010, 26(1): 199-205.] DOI: 10.3866/pku.Whxb20091222.

4.Huang J, Zhang J, Sun C, et al. Adjuvant role of salvia miltiorrhiza bunge in cancer chemotherapy: a review of its bioactive components, health-promotion effect and mechanisms[J]. J Ethnopharmacol, 2024, 318(Pt B): 117022. DOI: 10.1016/j.jep.2023.117022.

5.Chen X, Guo J, Bao J, et al. The anticancer properties of salvia miltiorrhiza bunge (Danshen): a systematic review[J]. Med Res Rev, 2014, 34(4): 768-794. DOI: 10.1002/med.21304.

6.Liu J, Shen HM, Ong CN. Salvia miltiorrhiza inhibits cell growth and induces apoptosis in human hepatoma HepG(2) cells[J]. Cancer Lett, 2000, 153(1-2): 85-93. DOI: 10.1016/s0304-3835(00)00391-8.

7.Gong Y, Li Y, Lu Y, et al. Bioactive tanshinones in salvia miltiorrhiza inhibit the growth of prostate cancer cells in vitro and in mice[J]. Int J Cancer, 2011, 129(5): 1042-1052. DOI: 10.1002/ijc.25678.

8.Jiang YL, Xun Y. Molecular mechanism of salvia miltiorrhiza in the treatment of colorectal cancer based on network pharmacology and molecular docking technology[J]. Drug Des Devel Ther, 2024, 18: 425-441. DOI: 10.2147/DDDT.S443102.

9.Ye YT, Zhong W, Sun P, et al. Apoptosis induced by the methanol extract of salvia miltiorrhiza bunge in non-small cell lung cancer through PTEN-mediated inhibition of PI3K/Akt pathway[J]. J Ethnopharmacol, 2017, 200: 107-116. DOI: 10.1016/j.jep.2016.12.051.

10.Xie J, Liu J, Liu H, et al. The antitumor effect of tanshinone IIA on anti-proliferation and decreasing VEGF/VEGFR2 expression on the human non-small cell lung cancer A549 cell line[J]. Acta Pharm Sin B, 2015, 5(6): 554-563. DOI: 10.1016/j.apsb.2015.07.008.

11.Wang J, Ma Y, Guo M, et al. Salvianolic acid B suppresses EMT and apoptosis to lessen drug resistance through AKT/mTOR in gastric cancer cells[J]. Cytotechnology, 2021, 73(1): 49-61. DOI: 10.1007/s10616-020-00441-4.

12.Zheng X, Chen S, Yang Q, et al. Salvianolic acid a reverses the paclitaxel resistance and inhibits the migration and invasion abilities of human breast cancer cells by inactivating transgelin 2[J]. Cancer Biol Ther, 2015, 16(9): 1407-1414. DOI: 10.1080/15384047.2015.1070990.

13.Mahmoud MA, Okda TM, Omran GA, et al. Rosmarinic acid suppresses inflammation, angiogenesis, and improves paclitaxel induced apoptosis in a breast cancer model via NF3 kappaB-p53-caspase-3 pathways modulation[J]. J Appl Biomed, 2021, 19(4): 202-209. DOI: 10.32725/jab.2021.024.

14.Li Q, Hu K, Tang S, et al. Anti-tumor activity of tanshinone IIA in combined with cyclophosphamide against Lewis mice with lung cancer[J]. Asian Pac J Trop Med, 2016, 9(11): 1084-1088. DOI: 10.1016/j.apjtm.2016.09.003.

15.Cline MS, Smoot M, Cerami E, et al. Integration of biological networks and gene expression data using cytoscape[J]. Nat Protoc, 2007, 2(10): 2366-2382. DOI: 10.1038/nprot.2007.324.

16.Sparano JA, Wang M, Martino S, et al. Weekly paclitaxel in the adjuvant treatment of breast cancer[J]. N Engl J Med, 2008, 358(16): 1663-1671. DOI: 10.1056/NEJMoa0707056.

17.Baird RD, Tan DS, Kaye SB. Weekly paclitaxel in the treatment of recurrent ovarian cancer[J]. Nat Rev Clin Oncol, 2010, 7(10): 575-582. DOI: 10.1038/nrclinonc.2010.120.

18.He Z, Wang Y, Han L, et al. The mechanism and application of traditional Chinese medicine extracts in the treatment of lung cancer and other lung-related diseases[J]. Front Pharmacol, 2023, 14: 1330518. DOI: 10.3389/fphar.2023.1330518.

19.Lee CY, Sher HF, Chen HW, et al. Anticancer effects of tanshinone I in human non-small cell lung cancer[J]. Mol Cancer Ther, 2008, 7(11): 3527-3538. DOI: 10.1158/1535-7163.MCT-07-2288.

20.Liao XZ, Gao Y, Huang S, et al. Tanshinone IIA combined with cisplatin synergistically inhibits non-small-cell lung cancer in vitro and in vivo via down-regulating the phosphatidylinositol 3-kinase/Akt signalling pathway[J]. Phytother Res, 2019, 33(9): 2298-2309. DOI: 10.1002/ptr.6392.

21.Tang XL, Yan L, Zhu L, et al. Salvianolic acid A reverses cisplatin resistance in lung cancer A549 cells by targeting c-met and attenuating Akt/mTOR pathway[J]. J Pharmacol Sci, 2017, 135(1): 1-7. DOI: 10.1016/j.jphs.2017.06.006.

22.秦琼, 任尧尧, 钟殿胜. CDK4/6抑制剂在非小细胞肺癌治疗中的研究进展[J]. 中国肺癌杂志, 2020, 23(3): 176-181. [Qin Q, Ren YY, Zhong DS. Research progress of CDK4/6 inhibitors in non-small cell lung cancer[J]. Chinese Journal of Lung Cancer, 2020, 23(3): 176-181.] DOI: 10.3779/j.issn.1009-3419.2020.03.07.

23.温文浩, 侯雪楠, 崔赛男, 等. 丹参酮ⅡA通过自噬诱导肺癌A549细胞周期阻滞的作用研究[J]. 中药新药与临床药理, 2020, 31(5): 539-545. [Wen WH, Hou XN, Cui SN, et al. Cell cycle arrest in A549 cells caused by tanshinone ⅡA induced autophagy[J]. Traditional Chinese Drug Research & Clinical Pharmacology, 2020, 31(5): 539-545.] DOI: 10.19378/j.issn.1003-9783.2020.05.007.

24.Prakash J, Shaked Y. The interplay between extracellular matrix remodeling and cancer therapeutics[J]. Cancer Discov, 2024, 14(8): 1375-1388. DOI: 10.1158/2159-8290.CD-24-0002.

25.闫燕艳, 周雯敏, 郭乔如, 等. 丹参酮ⅡA对人非小细胞肺癌A549细胞增殖、迁移和侵袭的影响[J]. 中药材, 2021, 44(7): 1749-1753. [Yan YY, Zhou WM, Guo QR, et al. The effect of tanshinone IIA on proliferation, migration, and invasion of human non-small cell lung cancer A549 cells[J]. Journal of Chinese Medicinal Materials, 2021, 44(7): 1749-1753.] DOI: 10.13863/j.issn1001-4454.2021.07.037.

26.Jin L, Chen C, Huang L, et al. Salvianolic acid A blocks vasculogenic mimicry formation in human non-small cell lung cancer via PI3K/Akt/mTOR signalling[J]. Clin Exp Pharmacol Physiol, 2021, 48(4): 508-514. DOI: 10.1111/1440-1681.13464.

27.王硕. 氧化应激与非小细胞肺癌关系的研究进展[J]. 国际生物医学工程杂志, 2020, 43(2): 156-160. [Wang S. Research progress in the relationship between oxidative stress and NSCLC[J]. International Journal of Biomedical Engineering, 2020, 43(2): 156-160.] DOI: 10.3760/cma.j.cn121382-20191109-00213.

28.Gao H, Sun W, Zhao W, et al. Total tanshinones-induced apoptosis and autophagy via reactive oxygen species in lung cancer 95D cells[J]. Am J Chin Med, 2015, 43(6): 1265-1279. DOI: 10.1142/S0192415X1550072X.

29.Yang Y, Huang L, Gao J, et al. Salvianolic acid B inhibits the growth and metastasis of A549 lung cancer cells through the NDRG2/PTEN pathway by inducing oxidative stress[J]. Med Oncol, 2024, 41(7): 170. DOI: 10.1007/s12032-024-02413-6.

30.Li X, Liu M, Liu H, et al. Tumor metabolic reprogramming in lung cancer progression[J]. Oncol Lett, 2022, 24(2): 287. DOI: 10.3892/ol.2022.13407.

31.Bai J, Qin Q, Li S, et al. Salvia miltiorrhiza inhibited lung cancer through aerobic glycolysis suppression[J]. J Ethnopharmacol, 2024, 331: 118281. DOI: 10.1016/j.jep.2024.118281.

32.Montalto FI, De Amicis F. Cyclin D1 in cancer: a molecular connection for cell cycle control, adhesion and invasion in tumor and stroma[J]. Cells, 2020, 9(12): 2648. DOI: 10.3390/cells9122648.

33.Patnaik A, Rosen LS, Tolaney SM, et al. Efficacy and safety of abemaciclib, an inhibitor of CDK4 and CDK6, for patients with breast cancer, non-small cell lung cancer, and other solid tumors[J]. Cancer Discov, 2016, 6(7): 740-753. DOI: 10.1158/2159-8290.CD-16-0095.

34.徐亚东, 张薇, 尤立光, 等. 丹参注射液对小鼠Lewis肺癌细胞周期素D1表达的影响[J]. 牡丹江医学院学报, 2008, 29(3): 25-27. [Xu YD, Zhang W, You LG, et al. The lnhibitory effects of the expression of cyclin D1 of mouse lewis cancer by danshen lnjection[J]. Journal of Mudanjiang Medical University, 2008, 29(3): 25-27.] DOI: 10.3969/j.issn.1001-7550.2008.03.012.

35.Clemm von Hohenberg K, Muller S, Schleich S, et al. Cyclin B/CDK1 and cyclin A/CDK2 phosphorylate DENR to promote mitotic protein translation and faithful cell division[J]. Nat Commun, 2022, 13(1): 668. DOI: 10.1038/s41467-022-28265-0.

36.Li M, He F, Zhang Z, et al. CDK1 serves as a potential prognostic biomarker and target for lung cancer[J]. J Int Med Res, 2020, 48(2): 300060519897508. DOI: 10.1177/0300060519897508.

37.Bertran-Alamillo J, Cattan V, Schoumacher M, et al. AURKB as a target in non-small cell lung cancer with acquired resistance to anti-EGFR therapy[J]. Nat Commun, 2019, 10(1): 1812. DOI: 10.1038/s41467-019-09734-5.

38.Woo JK, Kang JH, Shin D, et al. Daurinol enhances the efficacy of radiotherapy in lung cancer via suppression of aurora kinase A/ B expression[J]. Mol Cancer Ther, 2015, 14(7): 1693-1704. DOI: 10.1158/1535-7163.MCT-14-0960.

39.van den Bossche J, Domen A, Peeters M, et al. Radiosensitization of non-small cell lung cancer cells by the PLK1 inhibitor volasertib is dependent on the p53 status[J]. Cancers (Basel), 2019, 11(12). DOI: 10.3390/cancers11121893.

40.Eggermont C, Gutierrez GJ, De Greve J, et al. Inhibition of PLK1 destabilizes EGFR and Sensitizes EGFR-mutated lung cancer cells to small molecule inhibitor osimertinib[J]. Cancers (Basel), 2023, 15(9): 2589. DOI: 10.3390/cancers15092589.

41.Yao D, Gu P, Wang Y, et al. Inhibiting polo-like kinase 1 enhances radiosensitization via modulating DNA repair proteins in non-small-cell lung cancer[J]. Biochem Cell Biol, 2018, 96(3): 317-325. DOI: 10.1139/bcb-2017-0063.

42.Sun G, Ni K, Shen J, et al. microRNA-486-5p regulates DNA damage inhibition and cisplatin resistance in lung adenocarcinoma by targeting AURKB[J]. Crit Rev Eukaryot Gene Expr, 2024, 34(4): 13-23. DOI: 10.1615/CritRevEukaryotGeneExpr.v34.i4.20.

43.Kotoula V, Krikelis D, Karavasilis V, et al. Expression of DNA repair and replication genes in non-small cell lung cancer (NSCLC): a role for thymidylate synthetase (TYMS)[J]. BMC Cancer, 2012, 12: 342. DOI: 10.1186/1471-2407-12-342.

44.Katiyar RS, Jha PK. Molecular simulations in drug delivery: opportunities and challenges[J]. Wires Comput Mol Sci, 2018, 8: e1358. https://doi.org/10.1002/wcms.1358.

Popular papers
Last 6 months