Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 26,2023 No.12 Detail

Network pharmacology study of Gardeniae Fructus in regulating ferroptosis for the treatment of cerebral ischemia-reperfusion injury

Published on Jan. 24, 2024Total Views: 1114 times Total Downloads: 442 times Download Mobile

Author: Jie JIANG 1, 2 Zhi-Qian YANG 1, 2 Hong YANG 1, 2

Affiliation: 1. Medical Experimental Center, China Academy of Chinese Medical Sciences, Beijing 100700, China 2. Beijing Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Major Diseases, Beijing 100700, China

Keywords: Gardeniae Fructus Cerebral ischemia-reperfusion injury Ferroptosis Network pharmacology

DOI: 10.12173/j.issn.1008-049X.202311207

Reference: Jie JIANG, Zhi-Qian YANG, Hong YANG.Network pharmacology study of Gardeniae Fructus in regulating ferroptosis for the treatment of cerebral ischemia-reperfusion injury[J].Zhongguo Yaoshi Zazhi,2023, 26(12):361-373.DOI: 10.12173/j.issn.1008-049X.202311207.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Objective  To investigate the molecular mechanism of Gardeniae Fructus regulating ferroptosis in the treatment of cerebral ischemia-reperfusion injury (CIRI) by network pharmacology methods.

Methods  The effective active ingredients of Gardeniae Fructus and their predicted targets were obtained from the TCMSP database. Cerebral ischemia-reperfusion injury were collected and obtained from the GeneCards database. The active ingredients of Gardeniae Fructus and the intersection genes of CIRI injury were obtained through Venny. The Cytoscape 3.9.1 software was utilized to construct a relationship network among Gardeniae Fructus, its active components and predicted targets. The gene ontology (GO) enrichment and the Kyoto encyclopedia of genes and genomes (KEGG) analyses of the "gardenia-CIRI" intersection genes were performed using R software. The ferroptosis-related genes were obtained from the FerrDb database, and the common targets among the active components of Gardeniae Fructus, CIRI and ferroptosis were comprehensively analyzed to predict the effective components and targets involved in the regulation of ferroptosis in the context of CIRI.

Results  Sixty-five active components with corresponding gene targets were identified from Gardeniae Fructus, and the correlating prediction was conducted. HIF-1α, TP53, MAPK8, HMOX1, NOS2, RELA  and IL-6 were identified as potential targets of Gardeniae Fructus in regulating ferroptosis and preventing cerebral ischemia-reperfusion injury. KEGG analysis suggested that Gardeniae Fructus may mediate HIF-1, TNF, MAPK and Toll-like receptor signaling pathways to regulate the ferroptosis process, thus exerting therapeutic effects on CIRI.

Conclusion Gardeniae Fructus may treat cerebral ischemia-reperfusion injury by regulating the ferroptosis pathway.

Full-text
Please download the PDF version to read the full text: download
References

1.李兆珍, 张丹参. 脑缺血再灌注损伤相关机制的研究进展[J]. 神经药理学报, 2020, 10(6): 60-63. [LI ZZ, Zhang DS. Research progress on mechanisms related to cerebral ischemia-reperfusion injury[J]. Journal of Neuropharmacology, 2020, 10(6): 60-63.] DOI: 10.3969/j.issn.2095-1396.2020.06.011.

2.任靓明, 田红旗. 炎症因子及其抑制剂对脑缺血再灌注损伤作用的研究进展[J]. 中国医药导报, 2021, 18(12): 61-64. [Ren LM, Tian HQ. Research progress on the effects of inflammatory factors and their inhibitors on cerebral ischemia/reperfusion injury[J]. China Medical Journal, 2021, 18(12): 61-64.] http://www.cnki.com.cn/Article/CJFDTotal-YYCY202112016.htm.

3.Yuan H, Pratte J, Giardina C. Ferroptosis and its potential as a therapeutic target[J]. Biochem Pharmacol, 2021, 186: 114486. DOI: 10.1016/j.bcp.2021.114486.

4.胡淼, 门运政, 陈蕾, 等. 右美托咪定通过抑制铁死亡发挥对小鼠脑缺血再灌注损伤的保护作用[J]. 中南大学学报(医学版), 2022, 47(5): 600-609. [Hu M, Men YZ, Chen L, et al. Dexmedetomidine exerts protective effects on cerebral ischemia/reperfusion injury in mice by inhibiting iron death[J]. Journal of Central South University (Medical Edition), 2022, 47(5): 600-609.] DOI: 10.11817/j.issn.1672-7347.2022.210443.

5.She X, Lan B, Tian H, et al. Cross talk between ferroptosis and cerebral ischemia[J]. Front Neurosci, 2020, 14: 776. DOI: 10.3389/fnins.2020.00776.

6.常富业, 王永炎. 中风病毒邪论[J]. 北京中医药大学学报, 2004, 27(1): 3-6. [Chang FY, Wang YY. Theory of viral evil in stroke[J]. Journal of Beijing University of Chinese Medicine, 2004, 27(1): 3-6.] DOI: 10.3321/j.issn:1006-2157.2004.01.002.

7.李传云, 李澎涛, 潘彦舒, 等. 牛黄、栀子配伍对大鼠局灶性脑缺血再灌注不同时段脂质过氧化损伤的影响[J]. 中国医药学报, 2004, 19(9): 528-530. [Li CY, Li PT, Pan YS, et al. Effects of bovine rhubarb and gardenia on lipid peroxidation injury in rats with focal cerebral ischemia/reperfusion at different times[J]. Chinese Journal of Medicine, 2004, 19(9): 528-530.] DOI: 10.3969/j.issn.1673-1727.2004.09.006.

8.段石顽, 王欣, 王斌, 等. 麝香、冰片、薯蓣皂苷及栀子苷对大鼠脑缺血再灌注急性期炎性损伤的保护作用[J]. 中药药理与临床, 2012, 28(3): 43-46. [Duan SW, Wang X, Wang B, et al. Protective effects of musk, bingshi, diosgenin and gardenia glycosides on inflammatory injury during the acute phase of cerebral ischemia/reperfusion in rats[J]. Pharmacology and Clinic of Traditional Chinese Medicine, 2012, 28(3): 43-46.] DOI: CNKI:SUN:ZYYL.0.2012-03-017.

9.宋厚盼, 刘恒铭, 仇婧玥, 等. 胃癌发病关键基因调控网络构建及其靶向治疗中药活性成分筛选研究[J]. 中草药, 2021, 52(22): 6939-6952. [Song HP, Liu HM, Qu JY, et al. Construction of key gene regulatory networks in gastric cancer and screening of active ingredients in Chinese traditional medicines for targeted therapy [J]. Chinese Herbal Medicine, 2021, 52(22): 6939-6952.] DOI: 10.7501/j.issn.0253-2670.2021.22.020.

10.Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072. DOI: 10.1016/j.cell.2012.03.042.

11.Jin Y, Zhuang Y, Liu M, et al. Inhibiting ferroptosis: a novel approach for stroke therapeutics[J]. Drug Discov Today, 2021, 26(4): 916-930.] DOI: 10.1016/j.drudis. 2020.12.020.

12.Yan HF, Tuo QZ, Yin QZ, et al. The pathological role of ferroptosis in ischemia/reperfusion-related injury[J]. Zool Res, 2020, 41(3): 220-230. DOI: 10.24272/j.issn.2095- 8137.2020.042.  

13.张宇, 孙文爽, 赵建宁, 等. 铁死亡与氧化应激的关系及其在运动系统疾病中的研究进展[J]. 医学研究生学报, 2020, 33(4): 438-442. [Zhang Y, Sun WS, Zhao JN, et al. Relationship between iron death and oxidative stress, and its implications in locomotor disorders[J]. Postgraduate Medical Journal, 2020, 33(4): 438-442.] DOI: 10.16571/j.cnki.1008-8199.2020.04.019.

14.郑加嘉, 周泉漫, 曾繁涛. 黄芩苷、栀子苷对缺血脑组织神经营养因子含量的影响[J]. 广东药学院学报, 2006, 22(3): 320-322. [Zheng JJ, Zhou QM, Zeng FT. Effects of baicalin and gardenia glycoside on the content of neurotrophic factor in ischemic brain tissue[J]. Journal of Guangdong Pharmaceutical University,2006, 22(3): 320-322.] DOI: 10.3969/j.issn.1006-8783.2006.03.035.

15.王梓淞. 基于单克隆抗体特异性敲除技术的栀子苷与栀子改善HUVEC细胞氧化应激损伤作用的相关性研究[D]. 北京: 北京中医药大学, 2017.

16.谭安雄, 朱耀斌, 王玉银. 西红花酸对大鼠脑缺血-再灌注氧自由基及一氧化氮的影响[J]. 医药导报, 2011 30(7): 846-848. [Tan AX, Zhu YB, Wang YY. Effects of saffronic acid on oxygen radicals and nitric oxide in cerebral ischemia-reperfusion in rats[J]. Medicine Herald, 2011, 30(7): 846-848.] DOI: 10.3870/yydb.2011.07.004.

17.金瑶. 京尼平通过PINK1/Parkin通路调控线粒体自噬减轻HtrA2/Omi突变鼠脑缺血再灌注损伤[D]. 长春: 吉林大学, 2021.

18.焦红蕾. 山柰酚通过Wnt3a/beta-catenin信号通路促进实验性脑缺血小鼠神经功能改善及神经再生[D]. 石家庄:河北医科大学, 2016.

19.李秋菊, 江毅, 赵仁超, 等. 槲皮素通过PI3K/Akt/mTOR通路促进缺血性脑卒中小鼠康复的机制[J]. 贵州医科大学学报, 2022, 47(11): 1318-1324. [Li QJ, Jiang Y, Zhao RC, et al. Mechanism of quercetin promoting recovery in ischemic stroke mice through PI3K/Akt/mTOR pathway[J]. Journal of Guizhou Medical University, 2022, 47(11): 1318-1324.] DOI: 10.19367/j.cnki.2096- 8388.2022.11.010.

20.Ahmad A, Khan MM, Hoda MN, et al. Quercetin protects against oxidative stress associated damages in a rat model of transient focal cerebral ischemia and reperfusion[J]. Neurochem Res, 2011, 36(8): 1360-1371. DOI: 10.1007/s11064-011-0458-6.  

21.Hirayama Y, Koizumi S. Hypoxia-independent mechanisms of HIF-1α expression in astrocytes after ischemic preconditioning[J]. Glia, 2017, 65(3): 523-530. DOI: 10.1002/glia.23109.

22.辛海涛, 王卫宁. 栀子苷对大鼠局灶性脑缺血模型缺血脑组织HIF-1α蛋白和RTP801的影响[J]. 当代医学, 2010, 16(36): 25-26. [Xin HT, Wang WN. Effects of gardenia glycosides on HIF-1α protein and RTP801 in ischemic brain tissue of rat focal cerebral ischemia model[J]. Contemporary medicine, 2010, 16(36): 25-26.] DOI: 10.3969/j.issn.1009-4393.2010.36.017.

23.Jiang L, Kon N, Li TY, et al. Ferroptosis as a p53 mediated activity during tumour suppression[J]. Nature, 2015, 520(7545): 57-62. DOI: 10.1038/nature14344.

24.Chu B, Kon N, Chen D, et al. ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway[J]. Nat Cell Biol, 2019, 21: 579-591. DOI: 10.1038/s41556-019-0305-6.

25.Kang R, Kroemer G, Tang D. The tumor suppressor protein p53 and the ferroptosis network[J]. Free Radic Biol Med, 2019, 133: 162-168. DOI: 10.1016/j.freeradbiomed. 2018.05.074.

26.Wu C, Zhao W, Yu J, et al. Induction of ferroptosis and mitochondrial dysfunction by oxidative stress in PC12 cells [J]. Sci Rep, 2018, 8(1): 574. DOI: 10.1038/s41598-017-18935-1.

27.阮芳, 王云飞, 王继水. 基于JNK/p53通路探讨熊果酸诱导卵巢癌细胞系OVCAR3细胞铁死亡的作用及其机制[J]. 中华中医药学刊, 2021, 39(7): 62-64. [Ruan F, Wang YF, Wang JS. Exploration of ursolic acid-induced iron death and its mechanism in ovarian cancer cell line OVCAR3 based on JNK/p53 pathway[J]. Chinese Journal of Traditional Medicine, 2021, 39(7): 62-64.] DOI: 10.13193/j.issn.1673-7717.2021.07.016.

28.Kwon MY, Park E, Lee SJ, et al. Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death[J].Oncotarget, 2015, 6(27): 24393-403. DOI: 10.18632/oncotarget.5162.

29.Cataneo AHD, Tomiotto-Pellissier F, Miranda-Sapla MM, et al. Quercetin promotes antipromastigote effect by increasing the ROS production and anti-amastigote by upregulating Nrf2/HO-1 expression, affecting iron availability[J]. Biomed Pharmacother, 2019, 113: 108745. DOI: 10.1016/j.biopha.2019.108745.

30.Chang LC, Chiang SK, Chen SE, et al. Heme oxygenase-1 mediates BAY 11-7085 induced ferroptosis[J]. Cancer Letters, 2018, 416: 124-137. DOI: 10.1016/j.canlet.2017. 12.025.

31.杨奎, 石娅萍, 向靓, 等. 栀子总环烯醚萜苷对脑出血大鼠血红素氧合酶-1表达的影响[J]. 中药新药与临床药理, 2008, 19(1): 9-11. [Yang K, Shi YP, Xiang L, et al. Effects of total cyclic enol ether terpene glycosides of Gardenia jasminoides on heme oxygenase-1 expression in rats with cerebral hemorrhage[J]. New Chinese Medicine and Clinical Pharmacology, 2008, 19(1): 9-11.] DOI: 10.3321/j.issn:1003-9783.2008.01.004.

32.吕传峰, 朱亚亚. 槲皮素通过调节p62对Nrf2通路发挥对缺血再灌注损伤的保护作用[J]. 临床医药文献杂志, 2019, 6(14): 165. [Lyu CF, Zhu YY. Quercetin exerts a protective effect against ischemia-reperfusion injury by regulating p62 to Nrf2 pathway[J]. Journal of Clinical Medicine Literature, 2019, 6(14): 165.] DOI: 10.3877/j.issn.2095-8242.2019.14.136.

33.Yang R, Shen YJ, Chen M, et al. Quercetin attenuates ischemia reperfusion injury by protecting the blood-brain barrier through Sirt1 in MCAO rats[J]. J Asian Nat Prod Res, 2022. 24(3): 278-289. DOI: 10.1080/10286020. 2021.1949302.

34.Yang WS, SriRamaratnam R, Welsch ME, et al. Regulation of ferroptotic cancer cell death by GPX4[J]. Cell, 2014, 156(1-2): 317-331. DOI: 10.1016/j.cell.2013.12.010.

35.丁嵩涛, 刘洪涛, 李文明, 等. 栀子苷对氧化应激损伤血管内皮细胞的保护作用[J]. 中国药理学通报, 2009, 25(6): 725-729. [Ding ST, Liu HT, Li WM, et al. Protective effect of gardenia glycosides on oxidative stress-injured vascular endothelial cells [J]. Chinese Pharmacology Bulletin, 2009, 25(6): 725-729.] DOI: 10.3321/j.issn:1001-1978.2009.06.007.

36.Sun Y, Chen P,Zhai B, et al. The emerging role of ferroptosis in inflammation[J]. Biomed Pharmacother, 2020, 127: 110108. DOI: 10.1016/j.biopha.2020.110108.

37.Linkermann A, Skouta R, Himmerkus N, et al.Synchronized renal tubular cell death involves ferroptosis[J]. Proc Natl Acad Sci U S A, 2014, 111(47): 16836-16841. DOI: 10.1073/pnas.1415518111.

38.Petrova J, Manolov V, Vasilev V, et al. Ischemic stroke, inflammation, iron overload-connection to a hepcidin[J]. Int J Stroke, 2016, 11(1): NP16-NP17. DOI: 10.1177/1747493015607509.

39.Pereiro P, Figueras A, Novoa B. A novel hepcidin-like in turbot (Scophthalmus maximus L.) highly expressed after pathogen challenge but not after iron overload[J]. Fish Shellfish Immunol, 2012, 32: 879-889. DOI: 10.1016/j.fsi.2012.02.016.

40.Cheng K, Huang Y, Wang C. 1, 25 (OH)2D3 inhibited ferroptosis in zebrafish liver cells (ZFL) by regulating Keap1-Nrf2-GPX4 and NF-κB-hepcidin axis[J]. Int J Mol Sci. 2021, 22(21): 11334. DOI: 10.3390/ijms222111334.

41.Tsurusaki S, Tsuchiya Y, Koumura T, et al. Hepatic ferroptosis plays an important role as the trigger for initiating inflammation in nonalcoholic steatohepatitis[J]. Cell Death Dis, 2019, 10(6): 449-464. DOI: 10.1038/s41419-019-1678-y.

42.Wang C, Yuan W, Hu A, et al. Dexmedetomidine alleviated sepsis-induced myocardial ferroptosis and septic heart injury[J]. Mol Med Rep, 2020, 22(1): 175-184. DOI: 10.3892/mmr.2020.11114.

Popular papers
Last 6 months