Objective To systematically explore the underlying mechanisms of Runzao Zhiyang capsule against atopic dermatitis (AD) using ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS), network pharmacology and molecular docking, and provide a scientific basis for its clinical use.
Methods The chemical constituents in Runzao Zhuyao capsule were identified by UPLC-MS/MS. The SwissTargetPrediction platform was used to predict the component targets. The disease-related targets of AD were sourced from GeneCards, DisGeNET, and OMIM. The Venny 2.1.0 online tool was employed to obtain the intersection targets of drugs and diseases, and the “drug-component-disease-target” network diagram was further constructed with Cytoscape 3.9.0 software to identify the core active components. STRING database and Cytoscape 3.9.0 software were employed to build a protein-protein interaction (PPI) network and to screened out the core targets. DAVID was used for GO annotation and KEGG pathway enrichment analysis. Molecular docking further verified the binding activity between core components and targets.
Results A total of 202 chemical components had been identified, with flavonoids, alkaloids, and phenolic acids accounting for over 50%. 370 intersecting targets between Runzao Zhiyang capsule and AD were obtained, and 10 key components including naringenin, isoquercetin, and quercetin were screened out. Twenty core targets such as TNF, AKT1, IL1B, and EGFR were screened out through the topological analysis of the PPI network. The KEGG pathway enrichment analysis showed that Runzao Zhiyang capsule mainly act on signaling pathways such as the AGE-RAGE signaling pathway, HIF-1 signaling pathway, and Th17 cell differentiation pathway, thus improving AD. Molecular docking simulation confirmed that the active components have good binding affinity with the core targets.
Conclusion The identified key components in Runzao-Zhiyang capsules, such as genkwanin, isosinensetin, and morin, might improve AD by modulating core targets including TNF and AKT1 in the AGE-RAGE signaling pathway, thus providing directions and theoretical basis for the in-depth investigation of its underlying mechanisms.
1.Sidbury R, Kodama S. Atopic dermatitis guidelines: diagnosis, systemic therapy, and adjunctive care[J]. Clin Dermatol, 2018, 36(5): 648-652. DOI: 10.1016/j.clindermatol.2018.05.008.
2.De Bruyn Carlier T, Badloe FMS, Ring J, et al. Autoreactive T cells and their role in atopic dermatitis[J]. J Autoimmun, 2021, 120: 102634. DOI: 10.1016/j.jaut.2021.102634.
3.Reed B, Blaiss MS. The burden of atopic dermatitis[J]. Allergy Asthma Proc, 2018, 39(6): 406-410. DOI: 10.2500/aap.2018.39.4175.
4.中华医学会皮肤性病学分会免疫学组, 特应性皮炎协作研究中心. 中国特应性皮炎诊疗指南(2020版)[J]. 中华皮肤科杂志, 2020, 53(2): 81-88.[ Atopic Dermatitis Working Group, Immunology Group, Chinese Society of Dermatology. Guidelines for diagnosis and treatment of atopic dermatitis in China (2020) [J]. Chinese Journal of Dermatology, 2020, 53(2): 81-88.] DOI: 10.35541/cjd.20191000.
5.de la O-Escamilla NO, Sidbury R. Atopic dermatitis: update on pathogenesis and therapy[J]. Pediatr Ann, 2020, 49(3): e140-e146. DOI: 10.3928/19382359-20200217-01.
6.孙坤坤, 韩学超, 孙孝凤, 等. 中医药防治特应性皮炎研究进展[J]. 中国实验方剂学杂志, 2022, 28(5): 266-273. [Sun KK, Han XC, Sun XF, et al. Prevention and treatment of atopic dermatitis with traditional Chinese medicine: a review[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2022, 28(5): 266-273.] DOI: 10.13422/j.cnki.syfjx.20220495.
7.黄韬韬, 陈国富. 特应性皮炎中药治疗的实验和临床研究进展[J]. 亚太传统医药, 2012, 8(7): 210-211. [Huang TT, Chen GF. Research progress on treatment of atopic dermatitis with traditional Chinese medicine[J]. Asia-Pacific Traditional Medicine, 2012, 8(7): 210-211.] DOI: 10.3969/j.issn.1673-2197. 2012.07.124.
8.蒋靖. 润燥止痒胶囊联合荆防冲剂治疗特应性皮炎临床观察[J]. 中国中西医结合皮肤性病学杂志, 2009, 8(6): 376. [Jiang J. Clinical observation on treatment of atopic dermatitis with Runzha Zhiyang capsule combined with Jingfang Chongji[J]. Chinese Journal of Dermatovenerology of Integrated Traditional and Western Medicine, 2009, 8(6): 376.] DOI: 10.3969/j.issn.1672-0709.2009.06.022.
9.Huang D, Chen K, Zhang FR, et al. Efficacy and safety of Runzao Zhiyang capsule on chronic eczema: a multiple-center, randomized, double-blind, placebo-controlled clinical study[J]. J Dermatolog Treat, 2019, 30(7): 677-684. DOI: 10.1080/09546634.2019.1571267.
10.朱小华, 杨永生, 徐金华. 润燥止痒胶囊在成人轻中度特应性皮炎治疗中的作用[J]. 中国皮肤性病学杂志, 2010, 24(1): 38-39. [Zhu XH, Yang YS, Xu JH, et al. Observation of the effect of Run Zao Zhi yang capsule for treating mild or moderate atopic dermatitis[J]. The Chinese Journal of Dermatovenereology, 2010, 24(1): 38-39.] DOI: CNKI:SUN:ZBFX.0.2010-01-017.
11.王海亮, 阿米娜·哈布力, 木尼热阿·卡马里, 等. 润燥止痒胶囊联合NB-UVB照射治疗成人特应性皮炎的临床观察[J]. 中国中医药现代远程教育, 2018, 16(11): 94-96. [Wang XH, Amina H, Munirea K, et al. Clinical observation on Runzao Zhiyang capsule combined with nb-uvb radiation in the treatment of atopic dermatitis in adults[J]. Chinese Medicine Modern Distance Education of China, 2018, 16(11): 94-96.] DOI: 10.3969/j.issn.1672-2779.2018.11.044.
12.宋志强, 王欢. 特应性皮炎的治疗进展:新药物、新手段、新模式[J]. 中华皮肤科杂志, 2021, 54(2): 161-164. [Song ZQ, Wang H. Advances in the treatment of atopic dermatitis: new medications, new methods and new models[J]. Chinese Journal of Dermatology, 2021, 54(2): 161-164.] DOI: 10.35541/cjd.20201028.
13.Zawawi NA, Ahmad H, Madatheri R, et al. Flavonoids as natural anti-inflammatory agents in the atopic dermatitis treatment[J]. Pharmaceutics, 2025, 17(2): 261. DOI: 10.3390/pharmaceutics17020261.
14.Van Quickelberghe E, De Sutter D, van Loo G, et al. A protein-protein interaction map of the TNF-induced NF-κB signal transduction pathway[J]. Sci Data, 2018, 5: 180289. DOI: 10.1038/sdata.2018.289.
15.Timms K, Guo H, Arkwright P, et al. Keratinocyte EGF signalling dominates in atopic dermatitis lesions: a comparative RNA-seq analysis[J]. Exp Dermatol, 2022, 31: 1373-1384. DOI: 10.1111/exd.14605.
16.Guttman-Yassky E, Irvine AD, Brunner PM, et al. The role of Janus kinase signaling in the pathology of atopic dermatitis[J]. J Allergy Clin Immunol, 2023, 152(6): 1394-1404. DOI: 10.1016/j.jaci.2023.07.010.
17.Bachelez H. Immunopathogenesis of psoriasis: recent insights on the role of adaptive and innate immunity[J]. J Autoimmun, 2005, 25 (Suppl): 69-73. DOI: 10.1016/j.jaut.2005.09.025.
18.Wang A, Wei J, Lu C, et al. Genistein suppresses psoriasis-related inflammation through a STAT3-NF-κB-dependent mechanism in keratinocytes[J]. Int Immunopharmacol, 2019, 69: 270-278. DOI: 10.1016/j.intimp.2019.01.054.
19.Noda S, Suárez-Fariñas M, Ungar B, et al. The Asian atopic dermatitis phenotype combines features of atopic dermatitis and psoriasis with increased Th17 polarization[J]. J Allergy Clin Immunol, 2015, 136: 1254-1264. DOI: 10.1016/j.jaci.2015.08.015.
20.Read KA, Powell MD, Sreekumar BK, et al. In vitro differentiation of effector CD4+ T helper cell subsets[J]. Methods Mol Biol, 2019, 1960: 75-84. DOI: 10.1007/978-1-4939-9167-9_6.
21.孙明慧, 吴虹, 卜妍红, 等.介导缺氧诱导因子-1α表达的相关信号通路在类风湿性关节炎中的研究进展[J]. 中国药理学通报, 2019, 35(9): 1197-1202. [Sun MH, Wu H, Bu YH, et al. Research progress of signaling pathways involved in expression of hypoxia-inducible factor-1α in rheumatoid arthritis[J]. Chinese Pharmacological Bulletin, 2019, 35(9): 1197-1202.] DOI: 10.3969/j.issn.1001-1978.2019.09.004.
22.Zhou M, Zhang Y, Shi L, et al. Activation and modulation of the AGEs-RAGE axis: implications for inflammatory pathologies and therapeutic interventions-a review[J]. Pharmacol Res, 2024, 206: 107282. DOI: 10.1016/j.phrs.2024.107282.
23.Byun K, Yoo Y, Son M, et al. Advanced glycation end-products produced systemically and by macrophages: a common contributor to inflammation and degenerative diseases[J]. Pharmacol Ther, 2017, 177: 44-55. DOI: 10.1016/j.pharmthera.2017.02.030.
24.Wang M, Ma X, Gao C, et al. Rutin attenuates inflammation by downregulating AGE-RAGE signaling pathway in psoriasis: network pharmacology analysis and experimental evidence[J]. Int Immunopharmacol, 2023, 125 (Pt A): 111033. DOI: 10.1016/j.intimp.2023.111033.
25.Li M, Yu X, Chen X, et al. Genkwanin alleviates intervertebral disc degeneration via regulating ITGA2/PI3K/AKT pathway and inhibiting apoptosis and senescence[J]. Int Immunopharmacol, 2024, 133: 112101. DOI: 10.1016/j.intimp.2024.112101.
26.El Menyiy N, Aboulaghras S, Bakrim S, et al. Genkwanin: an emerging natural compound with multifaceted pharmacological effects[J]. Biomed Pharmacother, 2023, 165: 115159. DOI: 10.1016/j.biopha.2023.115159.
27.Shao D, Liu X, Wu J, et al. Identification of the active compounds and functional mechanisms of Jinshui Huanxian formula in pulmonary fibrosis by integrating serum pharmacochemistry with network pharmacology[J]. Phytomedicine, 2022, 102: 154177. DOI: 10.1016/j.phymed.2022.154177.
28.Fan J, Kong C, Yu B, et al. Investigation of the potential pharmacological substance basis and mechanism of action of Xuantu granules in treating diabetic kidney disease based on UHPLC-Q-exactive-HRMS and Bioinformatics[J]. Comb Chem High Throughput Screen, 2025 DOI: 10.2174/0113862073364424241202111833.
29.Miao Y, Wu X, Xue X, et al. Morin, the PPARγ agonist, inhibits Th17 differentiation by limiting fatty acid synthesis in collagen-induced arthritis[J]. Cell Biol Toxicol, 2023, 39(4): 1433-1452. DOI: 10.1007/s10565-022-09769-3.
30.Dan Y, Jin Y, Wang J, et al. Combination of RNA-sequencing data analysis, network pharmacology, molecular docking techniques to investigate the mechanism of Prunella vulgaris L. in the treatment of non-small cell lung cancer[J]. Discov Oncol, 2025, 16(1): 726. DOI: 10.1007/s12672-025-02563-7.