Ginseng is the dried root and rhizome of Panax ginseng, a plant of the Araliaceae family, whcih was first recorded in the Shennong herbal classic. It is a commonly used traditional Chinese medicine, and has anti-inflammatory, antioxidant, anti-tumor, anti allergy, immune regulation and other therapeutic effects. In modern research, ginseng extract mainly includes ginsenosides, ginseng polysaccharides, volatile oils, polyacetylene, proteins, fatty acids and other active ingredients. By consulting the relevant literature at home and abroad, this paper reviews the research progress of ginseng chemical components and pharmacological effects, in order to provide some reference for subsequent research.
1.中国药典2020年版. 一部[S]. 2020: 8.
2.宋齐. 人参化学成分和药理作用研究进展[J]. 人参研究, 2017, 29(2): 47-54. [Song Q. Research progress on chemical constituents of Panax ginseng and their pharmacological effects[J]. Renshen Yanjiu, 2017, 29(2): 47-54.] DOI: 10.19403/j.cnki.1671-1521.2017.02.013.
3.Zhang H, Abid S, Ahn JC, et al. Characteristics of Panax ginseng cultivars in Korea and China[J]. Molecules, 2020, 25(11): 2635. DOI: 10.3390/molecules25112635.
4.杨岩涛, 肖佳妹, 杨岩, 等. 基于上皮间质转化的人参活性成分抗肿瘤作用的研究进展[J]. 中草药, 2021, 52(16): 5052-5061. [Yang YT, Xiao JM, Yang Y, et al. Research progress on antitumor effects of active components from Panax ginseng based on epithelial interstitial transformation[J]. Chinese Traditional and Herbal Drugs, 2021, 52(16): 5052-5061.] DOI: 10.7501/j.issn.0253-2670.2021.16.030.
5.Ni XC, Wang HF, Cai YY, et al. Ginsenoside Rb1 inhibits astrocyte activation and promotes transfer of astrocytic mitochondria to neurons against ischemi cstroke[J]. Redox Biol, 2022, 54: 102363. DOI: 10.1016/j.redox.2022.102363.
6.胡娟娟, 汪芮羽, 韩跃威, 等. 基于指纹图谱和网络药理学的人参玫瑰饮质量标志物预测分析[J]. 药学前沿, 2025, 29(4), 551-559. [Hu JJ, Wang RY, Han YW, et al. Predictive analysis of quality markers of ginseng rose drink based on fingerprinting and network pharmacology[J]. Frontiers in Pharmaceutical Sciences, 2025, 29(4): 551-559.] DOI: 10.12173/j.issn.2097-4922.202411012.
7.Sun BS, Xu MY, Li Z, et al. UPLC-Q-TOF-MS/MS analysis for steaming times-dependent profiling of steamed Panax quinquefolius and its ginsenosides transformations induced by repetitious steaming[J]. J Ginseng Res, 2012, 36(3): 277-290. DOI: 10.5142/jgr.2012.36.3.277.
8.Lee JW, Choi BR, Kim YC, et al. Comprehensive profiling and quantification of ginsenosides in the root, stem, leaf, and berry of Panax ginseng by UPLC-QTOF/MS[J]. Molecules, 2017, 22(12): 2147.DOI: 10.3390/molecules22122147.
9.Zhu GY, Li YW, Hau DK, et al. Acylated protopanaxadiol-type ginsenosides from the root of Panax ginseng[J]. Chem Biodivers, 2011, 8(10): 1853-1863. DOI: 10.1002/cbdv.201000196.
10.Diao M, Chen Y, Meng L, et al. Biotransformation approach to produce rare ginsenosides F1, compound Mc1, and Rd2 from major ginsenosides[J]. Arch Microbiol, 2024, 206(4): 176. DOI: 10.1007/s00203-024-03893-w.
11.Siddiqi MH, Siddiqi MZ, Ahn S, et al. Ginseng saponins and the treatment of osteoporosis:mini literature review[J]. J Ginseng Res, 2013, 37(3): 261-268. DOI: 10.5142/jgr.2013.37.261.
12.朱海林. 野山参化学成分及抗慢性阻塞性肺疾病活性的研究[D]. 长春: 吉林大学, 2020. DOI: 10.27162/d.cnki.gjlin.2020. 000694.
13.周琪乐, 徐嵬, 杨秀伟. 中国红参化学成分研究[J]. 中国中药杂志, 2016, 41(2): 233-249. [Zhou QL, Xu W, Yang XW. Chemical constituents of Chinese red ginseng[J]. China Journal of Chinese Materia Medica, 2016, 41(2), 233-249.] DOI: 10.4268/cjcmm20160214.
14.Yang WZ, Ye M, Qiao X, et al. A strategy for efficient discovery of new natural compounds by integrating orthogonal column chromatography and liquid chromatography/mass spectrometry analysis: its application in Panax ginseng, Panax quinquefolium and Panax notoginseng to characterize 437 potential new ginsenosides[J]. Anal Chim Acta, 2012, 739: 56-66. DOI: 10.1016/j.aca.2012.06.017.
15.Zhou J, Zhang J, Jing P, et al. Ginseng in white and red processed forms: ginsenosides and cardiac side effects[J]. Food Sci Nutr, 2023, 12(3): 1857-1868. DOI: 10.1002/fsn3.3879.
16.Hou M, Wang R, Zhao S, et al. Ginsenosides in Panax genus and their biosynthesis[J]. Acta Pharm Sin B, 2021, 11(7): 1813-1834. DOI: 10.1016/j.apsb.2020.12.017.
17.Ruan CC, Liu Z, Li X, et al. Isolation and characterization of a new ginsenoside from the fresh root of Panax ginseng[J]. Molecules, 2010, 15(4): 2319-2325. DOI: 10.3390/molecules15042319.
18.Chen W, Balan P, Popovich DG. Comparison of ginsenoside components of various tissues of New Zealand forest-grown Asian ginseng (Panax ginseng) and American ginseng (Panax Quinquefolium L.)[J]. Biomolecules, 2020, 10(3): 372. DOI: 10.3390/biom10030372.
19.孙光芝, 李向高, 刘志, 等. 人参根中丙二酰基三七人参皂苷-R4的分离及其结构表征[J]. 高等学校化学学报, 2007, 28(7): 1316-1318. [Sun GZ, Li XG, Liu Z, et al. Isolation and structure characterization of malonyl-notoginsenoside-R4 from the root of Panax ginseng[J]. Chemical Journal of Chinese Universities, 2007, 28(7): 1316-1318.] DOI: 10.3321/j.issn:0251-0790.2007.07.047.
20.Sun H, Ma LJ, Wan JB, et al. Preparative separation of gypenoside XVII, ginsenoside Rd2,and notoginsenosides Fe and Fd from Panax notoginseng leaves by countercurrent chromatography and orthogonality evaluation for their separation[J]. J Sep Sci, 2021, 44(15): 2996-3003. DOI: 10.1002/jssc.202100078.
21.Wang HP, Wang ZJ, Du J, et al. Comprehensive identification of ginsenosides in the roots and rhizomes of Panax ginseng based on their molecular features-oriented precursor ions selection and targeted MS/MS analysis[J]. Molecules, 2023, 28(3): 941. DOI: 10.3390/molecules28030941.
22.Pan J, Zheng W, Pang X, et al. Comprehensive investigation on ginsenosides in different parts of a garden-cultivated ginseng root and rhizome[J]. Molecules, 2021, 26(6): 1696. DOI: 10.3390/molecules26061696.
23.Lee DG, Lee J, Yang S, et al. Identification of dammarane-type triterpenoid saponins from the root of Panax ginseng[J]. Nat Prod Sci, 2015, 21(2): 111-121. https://www.nstl.gov.cn/paper_detail.html?id=028f59153ca8728484109d4f5e154f0f.
24.Lee DG, Lee AY, Kim KT, et al. Novel dammarane-type triterpene saponins from Panax ginseng root[J]. Chem Pharm Bull (Tokyo), 2015, 63(11): 927-934. DOI: 10.1248/cpb.c15-00302.
25.Zhao XT, Dou DQ, Qu Y, et al. Structure elucidation and NMR spectral assignments of one new dammarane-type triterpenoid saponin from black ginseng[J]. J Asian Nat Prod Res, 2024, 26(5): 636-643. DOI: 10.1080/10286020.2023.2253153.
26.Zhu H, Lin H, Tan J, et al. UPLC-QTOF/MS-based nontargeted metabolomic analysis of mountain-and garden-cultivated ginseng of different ages in Northeast China[J]. Molecules, 2018, 24(1): 33. DOI: 10.3390/molecules24010033.
27.Wang C, Yu J, Guo Y, et al. Separation and purification of ginsenosides and flavonoids in from the leaves and stems of Panax quinquefolium by high-speed countercurrent chromatography and online-storage inner-recycling countercurrent chromatography[J]. J Sep Sci, 2025, 48(2): e70073. DOI: 10.1002/jssc.70073.
28.Piao X, Zhang H, Kang JP, et al. Advances in saponin diversity of Panax ginseng[J]. Molecules, 2020, 25(15): 3452. DOI: 10.3390/molecules25153452.
29.牛雪妮, 罗文, 吕重宁, 等. 野山参中1个新的聚炔类化合物[J]. 中草药, 2021, 52(1): 23-27. [Niu XN, Luo W, Lyu CN, et al. A new polyacetylene from wild ginseng[J]. Chinese Traditional and Herbal Drugs, 2021, 52(1): 23-27.] DOI: 10.7501/j.issn.0253-2670.2021.01.004.
30.Wang HP, Zhang YB, Yang XW, et al. Rapid characterization of ginsenosides in the roots and rhizomes of Panax ginseng by UPLC-DAD-QTOF-MS/MS and simultaneous determination of 19 ginsenosides by HPLC-ESI-MS[J]. J Ginseng Res, 2016, 40(4): 382-394. DOI: 10.1016/j.jgr.2015.12.001.
31.Wang YH, Wu YT, Cao HF, et al. Determination of 46 ginsenosides in different processed ginseng products by dispersive solid phase extraction combined with ultra-high performance liquid chromatography-tandem mass spectrometry[J]. Food Sci, 2023, 44(18): 305-315. DOI: 10.7506/spkx1002-6630-20221016-147.
32.左甜甜, 李威威, 李雪, 等. 人参中1个新的齐墩果酸型皂苷[J]. 中草药, 2020, 51(14): 3623-3632. [Zuo TT, Li WW, Li X, et al. A new oleanolic acid-type saponin from roots of Panax ginseng[J]. Chinese Traditional and Herbal Drugs, 2020, 51(14): 3623-3632.] DOI: 10.7501/j.issn.0253-2670.2020.14.003.
33.王洪平, 杨鑫宝, 杨秀伟, 等. 吉林人参根和根茎的化学成分研究[J]. 中国中药杂志, 2013, 38(17): 2807-2817. [Wang HP, Yang XB, Yang XW, et al. Chemical constituents from roots and rhizomes of Panax ginseng cultivated in Jilin province[J]. China Journal of Chinese Materia Medical, 2013, 38(17): 2807-2817.] DOI: 10.4268/cjcmm20131714.
34.Lee SM. Three hydroxylated ginsenosides from heat treatmented ginseng[J]. Korean J Pharmacognosy, 2020, 51(4): 255-263. DOI: 10.1007/s10600-013-0769-8.
35.吕重宁, 路金才. 人参皂苷在不同商品人参中的分布研究进展 [J]. 中草药, 2021, 52(17): 5329-5338. [Lyu CN, Lu JC. Research progress on the distribution of ginsenosides in different commercial ginseng[J]. Chinese Traditional and Herbal Drugs, 2021, 52(17): 5329-5338.] DOI: 10.7501/j.issn.0253-2670.2021.17.025.
36.Cho JG, Lee DY, Shrestha S, et al. Three new ginsenosides from the heat-processed roots of Panax ginseng[J]. Chem Nat Compd, 2013, 49(5): 882-887.] DOI: 10.1007/s10600-013-0769-8.
37.Dou DQ, Hou WB, Chen YJ. Studies on the characteristic constituents of Chinese ginseng and American ginseng[J]. Planta Medica, 1998, 64(6): 585-586. DOI: 10.1055/s-2006-957526.
38.Lee DG, Lee J, Cho IH, et al. Ginsenoside Rg12, a new dammarane-type triterpene saponin from Panax ginseng root[J]. J ginseng Res, 2017, 41(4): 531-533. DOI: 10.1016/j.jgr.2016.10.002.
39.Bai H, Wang S, Liu J, et al. Localization of ginsenosides in Panax ginseng with different age by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry imaging[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2016, 1026: 263-271. DOI: 10.1016/j.jchromb.2015.09.024.
40.Yang WZ, Hu Y, Wu WY, et al. Saponins in the genus Panax L.(Araliaceae): a systematic review of their chemical diversity[J]. Phytochemistry, 2014, 106: 7-24. DOI: 10.1016/j.phytochem.2014.07.012.
41.Park IH, Kim NY, Han SB, et al. Three new dammarane glycosides from heat processed ginseng[J]. Arch Pharm Res, 2002, 25(4): 428-432. DOI: 10.1007/BF02976595.
42.Lee MY, Seo HS, Singh D, et al. Unraveling dynamic metabolomes underlying different maturation stages of berries harvested from Panax ginseng[J]. J Ginseng Res, 2020, 44(3): 413-423. DOI: 10.1016/j.jgr.2019.02.002.
43.Niu X, Fan X, Lv C, et al. Two new dammarane-type ginsenosides from Panax ginseng[J]. Nat Prod Res, 2023, 37(7): 1116-1121. DOI: 10.1080/14786419.2021.1991338.
44.Park JD, Lee YH, Kim SI. Ginsenoside Rf2, a new dammarane glycoside from Korean red ginseng (Panax ginseng)[J]. Arch Pharm Res, 1998, 21(5): 615-617. DOI: 10.1007/BF02975384.
45.Xu XF, Cheng XL, Lin QH, et al. Identification of mountain-cultivated ginseng and cultivated ginseng using UPLC/oa-TOF MSE with a multivariate statistical sample-profiling strategy[J]. J ginseng Res, 2016, 40(4): 344-350. DOI: 10.1016/j.jgr.2015.11.001.
46.陈相波. 人参皂苷Rh7和Rd2通过调控长链非编码RNA抑制非小细胞肺癌细胞生长功能的机制研究[D]. 长春: 东北师范大学, 2021, DOI: 10.27011/d.cnki.gdbsu.2021.001697.
47.Shen R, Cao X, Laval S, et al. Synthesis of ocotillol-type ginsenosides[J]. J Org Chem, 2016, 81(21): 10279-10294. DOI: 10.1021/acs.joc.6b01265.
48.魏春雁. 越南人参的化学成分和药理作用[J]. 特产研究, 2001, 23(1): 57-61. [Wei CY. Chemical composition and pharmacological effects of Panax vietnamensis Haet Grushv.[J]. Special Wild Economic Animal and Plant Research, 2001, 23(1): 57-61.] DOI: 10.16720/j.cnki.tcyj.2001.01.018.
49.Zhang HJ, Lu ZZ, Tan GT, et al. Polyacetylene ginsenoside-Ro, a novel triterpene saponin from Panax ginseng[J]. Tetrahedron Lett, 2002, 43(6): 973-977. DOI: 10.1002/chin.200223196.
50.徐凤莲, 张启云, 姜丽, 等. UHPLC-Q-TOF/MS法分析红参醇提液中化学成分[J]. 中药新药与临床药理, 2015, 26(4): 529-534. [Xu FL, Zhang QY, Jiang L, et al. Study on chemical constituents of radix ginseng destillata alcohol extract by UHPLC-Q-TOF/MS[J]. Traditional Chinese Drug Research and Clinical Pharmacology, 2016, 26(4): 529-534.] DOI: 10.3969/j.issn.1003-9783.2015.04.024.
51.富力, 李向高, 杨守仁. 人参中齐墩果酸型新皂甙的分离鉴定[J]. 吉林农业大学学报, 1998, 20(2): 33-37, 45. [Fu L, Li XG, Yang SR. Isolation and identification of oleanolic acid neosaponins in ginseng[J]. Journal of Jilin Agricultural University, 1998, 20(2): 33-37, 45.] DOI: 10.13327/j.jjlau.1998.02.009.
52.Zhao B, Lyu C, Lu J. Natural occurring polysaccharides from Panax ginseng C. A. Meyer: a review of isolation,structures,and bioactivities[J]. Int J Biol Macromol, 2019, 133: 324-336. DOI: 10.1016/j.ijbiomac.2019.03.229.
53.Zhao JL, Zhang M, Zhou HL. Microwave-assisted extraction, purification, partial characterization, and bioactivity of polysaccharides from Panax ginseng[J]. Molecules, 2019, 24(8): 1605. DOI: 10.3390/molecules24081605.
54.Jia H, Zhao B, Zhang F, et al. Extraction, structural characterization, and anti-hepatocellular carcinoma activity of polysaccharides from Panax ginseng Meyer[J]. Front Oncol, 2021, 11: 785455. DOI: 10.3389/fonc.2021.785455.
55.Gu J, Zhang H, Wen C, et al. Purification, characterization, antioxidant and immunological activity of polysaccharide from Sagittaria sagittifolia L.[J]. Food Res Int, 2020, 136: 109345. DOI: 10.1016/j.foodres.2020.109345.
56.Ji L, Jie Z, Ying X, et al. Structural characterization of alkali-soluble polysaccharides from Panax ginseng C. A. Meyer[J]. R Soc Open Sci, 2018, 5(3): 171644. DOI: 10.1098/rsos.171644.
57.Kim SJ, Shin MS, Kim M, et al. Characterization of an immune-enhancing polysaccharide fraction isolated from heat-processed ginseng derived from Panax ginseng C.A. Meyer[J]. Appl Sci (2076-3417), 2021, 11(22). DOI: 10.3390/app112210835.
58.Li L, Thakur K, Cao YY, et al. Anticancerous potential of polysaccharides sequentially extracted from Polygonatum cyrtonema Hua in human cervical cancer Hela cells[J].Int J Biol Macromol, 2020, 148: 843-850. DOI: 10.1016/j.ijbiomac.2020.01.223.
59.Zhao B, Wang XY, Luo W, et al. Isolation and structuralelucidation of a low-molecular-weight polysaccharide from the roots of Panaxginseng C.A. Meyer[J]. Nat Prod Res, 2022, 36(2): 493-500. DOI: 10.1080/14786419.2020.1788025.
60.Kim HM, Song Y, Hyun GH, et al. Characterization and antioxidant activity determination of neutral and acidic polysaccharides from Panax ginseng C.A. Meyer[J]. Molecules, 2020, 25(4): 791. DOI: 10.3390/molecules25040791.
61.Liu S, Liu F, Wang T, et al. Polysaccharides extracted from Panax ginseng C.A. Mey enhance complement component 4 biosynthesis in human hepatocytes[J]. Front Pharmacol, 2021, 12: 734394. DOI: 10.3389/fphar.2021.734394.
62.Luo D, Fang B. Structural identification of ginseng polysaccharides and testing of their antioxidant activities[J]. Carbohydr Polym, 2008, 72: 376-381. DOI: 10.1016/J.CARBPOL.2007.09.006.
63.Zhang X, Yu L, Bi HT, et al. Total fractionation and characterization of the water-soluble polysaccharides isolated from Panax ginseng C. A. Meyer[J]. Carbohydr Polym, 2009, 77: 544-522. DOI: 10.1016/j.carbpol.2009.01.034.
64.Tomoda M, Takeda K, Shimizu N, et al. Characterization of two acidic polysaccharides having immunological activities from the root of Panax ginseng[J]. Biol Pharm Bull, 1993, 16(1): 22-25. DOI: 10.1248/bpb.16.22.
65.Gao QP, Kiyohara H, Cyong JC, et al. Chemical properties and anti-complementary activities of polysaccharide fractions from roots and leaves of Panax ginseng[J]. Planta Med, 1989, 55(1): 9-12. DOI: 10.1055/s-2006-961765.
66.Fan YY, Cheng HR, Li SS, et al. Relationship of the inhibition of cell migration with the structure of ginseng pectic polysaccharides[J]. Carbohydr Polym, 2010, 81(2): 340-347. DOI: 10.1016/j.carbpol.2010.02.028.
67.Yu L, Zhang X, Li SS, et al. Rhamnogalacturonan I domains from ginseng pectin[J]. Carbohydr Polym, 2010, 79(4): 811-817. DOI: 10.1016/j.carbpol.2009.08.028.
68.Tian M H, Wei M, Zhang L P, et al. Structure analysis of pectin SB1-1 from the root of Panax ginseng[J]. Chem Res Chin Univ, 2005, 21(3): 306-308. https://www.cnki.com.cn/Article/CJFDTotal-GHYJ200503012.htm.
69.Tomoda M, Hirabayashi K, Shimizu N, et al. Characterization of two novel polysaccharides having immunological activities from the root of Panax ginseng[J]. Biol Pharm Bull, 1993, 16(11): 1087-1090. DOI: 10.1248/bpb.16.1087.
70.Lee A, Jae-Chan A, Na K, et al. In vitro bifidogenic effect of nondigestible oligosaccharides isolated from red ginseng marc[J]. J Microbiol Biotechnol, 2001, 11(5): 858-862. https://www.semanticscholar.org/paper/In-vitro-bifidogenic-effect-of-nondigestible-from-Jae-Chan-Na/510fe366fb844e4f2ac63ad8e6fdc34d8484ff8e.
71.徐静, 贾力, 赵余庆. 人参的化学成分与人参产品的质量评价[J]. 药物评价研究, 2011, 34(3): 199-203. [Xu J, Jia L, Zhao YQ. Constituents of ginseng and quality evaluation of ginseng products[J]. Drug Evaluation Research, 2011, 34(3): 199-203.] DOI: 10.7501/j.issn.0253-6376.
72.陈英杰, 黄帧, 李念平, 等. 人参挥发油的研究[J]. 中国中药杂志, 1982, 7(4): 29-31. [Chen YJ, Huang Z, Li NP, et al. Research on the volatile oil of ginseng[J]. China Journal of Chinese Materia Medica, 1982, 7(4): 29-31.] https://www.cnki.com.cn/Article/CJFDTotal-ZGZY198204024.htm.
73.佟鹤芳, 薛健, 童燕玲. GC-MS法测定人参和西洋参挥发性成分[J]. 中医药学报, 2013, 41(1): 49-54. [Tong HF, Xue J, Tong YL. Analysis of volatile components from ginseng and american ginseng for identification by GC-MS[J]. Acta Chinese Medicine and Pharmacology, 2013, 41(1): 49-54.] DOI: 10.19664/j.cnki.1002-2392.2013.01.018.
74.王庆喜. 人参有效成分糖类、挥发油及无机元素的研究[D].长春: 吉林大学, 2016. https://cdmd.cnki.com.cn/article/cdmd-10183-1016093930.htm.
75.丁增伟. 人参根中挥发油含量变化规律的研究[D]. 长春: 吉林农业大学, 2008. DOI: 10.7666/d.y1511772.
76.赵花, 魏建华, 徐涛, 等. 人参挥发油成分的GC-MS分析 [J]. 人参研究, 2014, 26(3): 45-48. [Zhao H, Wei JH, Xu T, et al. Analysis of volatile oil components of Panax ginseng by GC-MS[J]. Renshen Yanjiu, 2014, 26(3): 45-48.] DOI: 10.19403/j.cnki.1671-1521.2014.03.014.
77.张维玲, 杨悦武, 孙艳, 等. 人参挥发油化学成分比较研究[J]. 中药材, 2019, 42(4), 813-817. [Zhang WL, Yang YW, Sun Y, et al. Comparative study on chemical constituents of ginseng volatile oil[J]. Journal of Chinese Medicinal Materials, 2019, 42(4): 813-817.] DOI: 10.13863/j.issn1001-4454.2019.04.023.
78.杨艳辉, 杨兴斌, 王燕, 等. 人参脂肪酸和挥发油成分的GC-MS分析[J]. 陕西师范大学学报(自然科学版), 2007, 35(1): 77-81. [Yang YH, Yang XB, Wang Y, et al. Analysis of fatty acid and volatile oil components in Panax ginseng C.A. Mey by GC/MS[J]. Journal of Shaanxi Normal University (Natural Science Edition), 2007, 35(1): 77-81.] DOI: 10.15983/j.cnki.jsnu.2007.01.019.
79.徐小平. 刺人参苷的药学研究[D]. 长春: 吉林大学, 2009. https://cdmd.cnki.com.cn/Article/CDMD-10183-2009095170.htm.
80.张宏桂, 阎吉昌, 吴广宣, 等. 长白人参中脂肪酸成分的研究[J]. 白求恩医科大学学报, 1994, 20(4): 365. [Zhang HG, Yan JC, Wu GX, et al. Study on the Fatty Acid Components in Changbai Mountain ginseng[J]. Journal of Norman Bethune Medical University, 1994, 20(4): 365.] DOI: 10.13481/j.1671-587x.1994.04.027.
81.陈文学, 赵岩, 杨琦, 等. 基于GC-MS法的不同品种人参中脂肪酸成分及含量分析[J]. 安徽农业科学, 2010, 38(20): 10634-10636. [Chen WX, Zhao Y, Yang Q, et al. Analysis of fatty acid components in different strains Panax ginseng C. A. Mey by GC-MS[J]. Journal of Anhui Agricultural Sciences, 2010, 38(20): 10634-10636.] DOI: 10.13989/j.cnki.0517-6611.2010.20.157.
82.杨佩儒, 宋廉, 张礼荣, 等. 人参炔醇联合吉西他滨对胰腺癌干细胞分化及活性的影响[J]. 江苏大学学报: 医学版, 2019, 29(3): 221-225. [Yang PR, Song L, Zhang LR, et al. Combined effect of panaxynol and gemcitabine on pancreatic cancer stem cell differentiation and proliferation[J]. Journal of Jiangsu University (Medicine Edition), 2019, 29(3): 221-225.] DOI: 10.13312/j.issn.1671-7783.y180260.
83.Murata K, Iida D, Ueno Y, et al. Novel polyacetylene derivatives and their inhibitory activities on acetylcholinesterase obtained from Panax ginseng roots[J]. J Nat Med, 2017, 71(1): 114-122. DOI: 10.1007/s11418-016-1036-7.
84.徐念智, 李兵. 中药中多炔类化学成分药理研究进展[J]. 中医药导报, 2021, 27(9): 137-141, 163. [Xu NZ, Li B. Research progress on pharmacology of polyacetylenes in traditional Chinese medicine[J]. Chinese Journal of Traditional Chinese Medicine, 2021, 27(9): 137-141, 163.] DOI: 10.13862/j.cnki.cn43-1446/r.2021.09.036.
85.王逸, 鲍勇刚, 贾韦国, 等. 人参蛋白研究进展[J]. 中草药, 2013, 44(19): 2782-2786. [Wang Y, Bao YG, Jia WG, et al. Research progress on ginseng proteins[J]. Chinese Traditional and Herbal Drugs, 2013, 44(19): 2782-2786.] DOI: 10.7501/j.issn.0253-2670.2013.19.028.
86.Gong L, Gao J, Xu T, et al. Transcriptome analysis of field-grown asian ginseng provides clues to environmental conditions and developmental mechanisms related to red skin root syndrome[J]. Ind Crop Prod, 2020, 153: 8. DOI: 10.1016/j.indcrop.2020.112486.
87.Song B, Ding L, Zhang H, et al. Ginsenoside Rb1 increases insulin sensitivity through suppressing 11β-hydroxysteroid dehydrogenase type I[J]. Am J Transl Res, 2017, 9(3): 1049-1057. https://pubmed.ncbi.nlm.nih.gov/28386332/.
88.Tian W, Chen L, Zhang L, et al. Effects of ginsenoside Rg1 on glucose metabolism and liver injury in streptozotocin-induced type 2 diabetic rats[J]. Genet Mol Res, 2017, 16(1). DOI: 10.4238/gmr16019463.
89.Lee HM, Lee OH, Kim KJ, et al. Ginsenoside Rg1 promotes glucose uptake through activated AMPK pathway in insulin-resistant muscle cells[J]. Phytother Res, 2012, 26(7): 1017-1022. DOI: 10.1002/ptr.3686.
90.Gao Y, Yang MF, Su YP, et al. Ginsenoside Re reduces insulin resistance through activation of PPAR-γ pathway and inhibition of TNF-α production[J]. J Ethnopharmacol, 2013, 147(2): 509-516. DOI: 10.1016/j.jep.2013.03.057.
91.Kim HY, Kim K. Regulation of signaling molecules associated with insulin action, insulin secretion and pancreatic β-cell mass in the hypoglycemic effects of Korean red ginseng in Goto-Kakizaki rats[J]. J Ethnopharmacol, 2012, 142(1): 53-58. DOI: 10.1016/j.jep.2012.04.012.
92.Sun C, Chen Y, Li X, et al. Anti-hyperglycemic and anti-oxidative activities of ginseng polysaccharides in STZ-induced diabetic mice[J]. Food Funct, 2014, 5(5): 845-848. DOI: 10.1039/c3fo60326a.
93.Yu HT, Zhen J, Pang B, et al. Ginsenoside Rg1 ameliorates oxidative stress and myocardial apoptosis in streptozotocin-induced diabetic rats[J]. J Zhejiang Univ Sci B, 2015, 16(5): 344-354. DOI: 10.1631/jzus.B1400204.
94.Dong W, Farooqui A, Leon AJ, et al. Inhibition of influenza A virus infection by ginsenosides[J]. PLoS One, 2017, 12(2): e0171936. DOI: 10.1371/journal.pone.0171936.
95.Lee WS, Rhee DK. Corona-Cov-2 (COVID-19) and ginseng: comparison of possible use in COVID-19 and influenza[J]. J Ginseng Res, 2021, 45(4): 535-537. DOI: 10.1016/j.jgr.2020.12.005.
96.Kim YR, Yang CS. Protective roles of ginseng against bacterial infection[J]. Microb Cell, 2018, 5(11): 472-481. DOI: 10.15698/mic2018.11.654.
97.Lee JS, Hwang HS, Ko EJ, et al. Immunomodulatory activity of red ginseng against influenza A virus infection[J]. Nutrients, 2014, 6(2): 517-529. DOI: 10.3390/nu6020517.
98.Yi YS. Potential benefits of ginseng against COVID-19 by targeting inflammasomes[J]. J ginseng Res, 2022, 46(6): 722-730. DOI: 10.1016/j.jgr.2022.03.008.
99.Seo SH. Ginseng protects ACE2-transgenic mice from SARS-CoV-2 infection[J]. Front Biosci (Landmark Ed), 2022, 27(6): 180. DOI: 10.31083/j.fbl2706180.
100.Lee YY, Quah Y, Shin JH, et al. COVID-19 and Panax ginseng: targeting platelet aggregation,thrombosis and the coagulation pathway[J]. J Ginseng Res, 2022, 46(2): 175-182. DOI: 10.1016/j.jgr.2022.01.002.
101.Park H, Kim S, Rhee J, et al. Synaptic enhancement induced by gintonin via lysophosphatidic acid receptor activation in central synapses[J]. J Neurophysiol, 2015, 113(5): 1493-1500. DOI: 10.1152/jn.00667.2014.
102.Kang A, Hao H, Zheng X, et al. Peripheral anti-inflammatory effects explain the ginsenosides paradox between poor brain distribution and anti-depression efficacy[J]. J Neuroinflammation, 2011, 8: 100. DOI: 10.1186/1742-2094-8-100.
103.Zhu X, Gao R, Liu Z, et al. Ginsenoside Rg1 reverses stress-induced depression-like behaviours and brain-derived neurotrophic factor expression within the prefrontal cortex[J]. Eur J Neurosci, 2016, 44(2): 1878-1885. DOI: 10.1111/ejn.13255.
104.Wang G, An T, Lei C, et al. Antidepressant-like effect of ginsenoside Rb1 on potentiating synaptic plasticity via the miR-134-mediated BDNF signaling pathway in a mouse model of chronic stress-induced depression[J]. J Ginseng Res, 2022, 46(3): 376-386. DOI: 10.1016/j.jgr.2021.03.005.
105.Xu X, Lu YN, Cheng JH, et al. Ginsenoside Rh2 reduces depression in offspring of mice with maternal toxoplasma infection during pregnancy by inhibiting microglial activation via the HMGB1/TLR4/NF-κB signaling pathway[J]. J Ginseng Res, 2022, 46(1): 62-70. DOI: 10.1016/j.jgr.2021.04.003.
106.Jin Y, Huynh DTN, Heo KS. Ginsenoside Rh1 inhibits tumor growth in MDA-MB-231 breast cancer cells via mitochondrial ROS and ER stress-mediated signaling pathway[J]. Arch Pharm Res, 2022, 45(3): 174-184. DOI: 10.1007/s12272-022-01377-3.
107.Huang J, Liu D, Wang Y, et al. Ginseng polysaccharides alter the gut microbiota and kynurenine/tryptophan ratio,potentiating the antitumour effect of antiprogrammed cell death 1/programmed cell death ligand 1 (anti-PD-1/PD-L1) immunotherapy[J]. Gut, 2022, 71(4): 734-745. DOI: 10.1136/gutjnl-2020-321031.
108.张丽轩, 王思明, 王敏, 等. 人参水溶性总蛋白对小鼠黑色素瘤细胞B16的增殖抑制及对Bcl-2/Bax表达的影响[J]. 科学技术与工程, 2017, 17(33): 64-68. [Zhang LX, Wang SM, Wang M, et al. Proliferation inhibition of mouse melanoma cell line B16 bywater-soluble total protein and the effect on Bcl-2/Bax[J]. Science Technology and Engineering, 2017, 17(33): 64-68.] DOI: 10.3969/j.issn.1671-1815.2017.33.009.
109.程璐, 李红艳, 孔亮, 等. 人参蛋白协同H2O2诱导SH-SY5Y细胞氧化损伤[J]. 中国医院药学杂志, 2016, 36(9): 707-710. [Cheng L, Li HY, Kong L, et al. Oxidative injury in SH-SY5Y cells induced synergistically by ginseng protein and H2O2[J]. Chinese Journal of Hospital Pharmacy, 2016, 36(9): 707-710.] DOI: 10.13286/j.cnki.chinhosppharmacyj.2016.09.02.
110.Qi X, Lu X, Han Y, et al. Ginseng polysaccharide reduces autoimmune hepatitis inflammatory response by inhibiting PI3K/AKT and TLRs/NF-κB signaling pathways[J]. Phytomedicine, 2023, 116: 154859. DOI: 10.1016/j.phymed.2023.154859.
111.Bing SJ, Ha D, Hwang I, et al. Protective effects on central nervous system by acidic polysaccharide of Panax ginseng in relapse-remitting experimental autoimmune encephalomyelitis-induced SJL/J mice[J]. Am J Chin Med, 2016, 44(6): 1099-1110. DOI: 10.1142/S0192415X16500610.
112.李红艳, 赵雨, 孙晓迪, 等. 人参蛋白对小鼠免疫功能影响的研究[J]. 亚太传统医药, 2010, 6(1): 14-16. [Li HY, Zhao Y, Sun XD, et al. Effect of ginseng protein on immune function in mice[J].Asia-Pacific Traditional Medicine, 2010, 6(1): 14-16.] DOI: CNKI:SUN:YTCT.0.2010-01-008.
113.He LX, Ren JW, Liu R, et al. Ginseng (Panax ginseng Meyer) oligopeptides regulate innate and adaptive immune responses in mice via increased macrophage phagocytosis capacity, NK cell activity and Th cells secretion[J]. Food Funct, 2017, 8(10): 3523-3532. DOI: 10.1039/c7fo00957g.
114.Son SU, Lee HW, Park JH, et al. Identification of intracellular activation mechanism of rhamnogalacturonan-I type polysaccharide purified from Panax ginseng leaves in macrophages and roles of component sugar chains on activity[J]. J Nat Med, 2024, 78(2): 328-341. DOI: 10.1007/s11418-023-01768-w.
115.Guo M, Xiao J, Sheng X, et al. Ginsenoside Rg3 mitigates atherosclerosis progression in diabetic ApoE-/- mice by skewing macrophages to the M2 phenotype[J]. Front Pharmacol, 2018, 9: 464. DOI: 10.3389/fphar.2018.00464.
116.Zhang X, Liu MH, Qiao L, et al. Ginsenoside Rb1 enhances atherosclerotic plaque stability by skewing macrophages to the M2 phenotype[J]. J Cell Mol Med, 2018, 22(1): 409-416. DOI: 10.1111/jcmm.13329.
117.Chen X, Yao F, Song J, et al. Protective effects of phenolic acid extract from ginseng on vascular endothelial cell injury induced by palmitate via activation of PI3K/Akt/eNOS pathway[J]. J Food Sci, 2020, 85(3): 576-581. DOI: 10.1111/1750-3841.15071.
118.伏秋, 马丹丹, 佟岩, 等. 人参炔醇通过Nrf2/ARE通路调控小鼠心肌缺血再灌注损伤[J]. 解剖科学进展, 2021, 27(2): 143-146. [Fu Q, Ma DD, Tong Y, et al. Panaxynol regulates myocardial ischemia-reperfusion injuryin mice through Nrf2/ARE pathway[J]. Progress of Anatomical Sciences, 2021, 27(2): 143-146.] DOI: 10.16695/j.cnki.1006-2947.2021.02.004.