Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used to treat osteoarthritis, rheumatoid arthritis, and acute and chronic painful diseases. Significant interindividual heterogeneity in the efficacy of NSAIDs has been found in patients, which can lead to treatment failure or life-threatening adverse drug reactions. This review will discuss the causes of the variability in the efficacy of NSAIDs in terms of CYP2C9 enzyme gene polymorphism, cyclooxygenase enzyme gene polymorphism, and differences in the intestinal microbiota, to provide a reference for the development of individualized dosing regimens for NSAIDs.
1.Geenen R, Overman CL, Christensen R, et al. EULAR recommendations for the health professional's approach to pain management in inflammatory arthritis and osteoarthritis[J]. Ann Rheum Dis, 2018, 77(6): 797-807. DOI: 10.1136/annrheumdis-2017-212662.
2. Hersh EV, Levin LM, Adamson D, et al. Dose-ranging analgesic study of prosorb diclofenac potassium in postsurgical dental pain[J]. Clin Ther, 2004, 26(8): 1215-1227. DOI: 10.1016/s0149-2918(04)80033-x.
3. Moore RA, Moore OA, Derry S, et al. Responder analysis for pain relief and numbers needed to treat in a Meta-analysis of etoricoxib osteoarthritis trials: bridging a gap between clinical trials and clinical practice[J]. Ann Rheum Dis, 2010, 69(2): 374-379. DOI: 10.1136/ard.2009. 107805.
4. 国家卫生健康委员会医管中心加速康复外科专家委员会, 浙江省医师协会临床药师专家委员会, 浙江省药学会医院药学专业委员会. 中国加速康复外科围手术期非甾体抗炎药临床应用专家共识[J].中华普通外科杂志, 2019, 34(3): 283-288. DOI: 10.3760/cma.j.issn.1007-631X.2019.03.032.
5. Rollason V, Samer CF, Daali Y, et al. Prediction by pharmacogenetics of safety and efficacy of non-steroidal anti-inflammatory drugs: a review[J]. Curr Drug Metab, 2014, 15(3): 326-343. DOI: 10.2174/1389200215666140202214454.
6. Grosser T, Theken KN, FitzGerald GA. Cyclooxygenase inhibition: pain, inflammation, and the cardiovascular system[J]. Clin Pharmacol Ther, 2017, 102(4): 611-622. DOI: 10.1002/cpt.794.
7. Zobdeh F, Eremenko II, Akan MA, et al. Pharmacogenetics and pain treatment with a focus on non-steroidal anti-inflammatory drugs (NSAIDs) and antidepressants: a systematic review[J]. Pharmaceutics, 2022, 14(6): 1190. DOI: 10.3390/pharmaceutics14061190.
8. Wyatt JE, Pettit WL, Harirforoosh S. Pharmacogenetics of nonsteroidal anti-inflammatory drugs[J]. Pharmacogenomics J, 2012, 12(6): 462-467. DOI: 10.1038/tpj.2012.40.
9. Yuan LJ, Li XY, Ye F, et al. Enzymatic activity of 38 CYP2C9 genotypes on ibuprofen[J]. Food Chem Toxicol, 2023, 178: 113926. DOI: 10.1016/j.fct.2023.113926.
10. Liu R, Gong C, Tao L, et al. Influence of genetic polymorphisms on the pharmacokinetics of celecoxib and its two main metabolites in healthy Chinese subjects[J]. Eur J Pharm Sci, 2015, 79: 13-19. DOI: 10.1016/j.ejps.2015. 09.005.
11. 何旭, 解染, 周双, 等. CYP2C9及CYP2C19基因多态性与塞来昔布健康受试者的药代动力学研究[J]. 中国临床药理学杂志, 2023, 39(16): 2373-2377. [He X, Xie R, Zhou S, et al. Influence of CYP2C9 and CYP2C19 gene polymorphism on the pharmacokinetics of single dose oral celecoxib in healthy Chinese subjects[J]. The Chinese Journal of Clinical Pharmacology, 2023, 39(16): 2373-2377.] DOI: 10.13699/j.cnki.1001-6821.2023.16.020.
12. Li X, DuBois DC, Almon RR, et al. Modeling sex differences in pharmacokinetics, pharmacodynamics, and disease progression effects of naproxen in rats with collagen-induced arthritis[J]. Drug Metab Dispos, 2017, 45(5): 484-491. DOI: 10.1124/dmd.116.074526.
13. Thiel C, Smit I, Baier V, et al. Using quantitative systems pharmacology to evaluate the drug efficacy of COX-2 and 5-LOX inhibitors in therapeutic situations[J]. NPJ Syst Biol Appl, 2018, 4: 28. DOI: 10.1038/s41540-018-0062-3.
14. Hersh EV, Levin LM, Cooper SA, et al. Ibuprofen liquigel for oral surgery pain[J]. Clin Ther, 2000, 22(11): 1306-1318. DOI: 10.1016/s0149-2918(00)83027-1.
15. Murto K, Lamontagne C, McFaul C, et al. Celecoxib pharmacogenetics and pediatric adenotonsillectomy: a double-blinded randomized controlled study[J]. Can J Anaesth, 2015, 62(7): 785-797. DOI: 10.1007/s12630-015-0376-1.
16. Ustare LAT, Reyes KG, Lasac MAG, et al. Single nucleotide polymorphisms on CYP2C9 gene among Filipinos and its association with post-operative pain relief via COX-2 inhibitors[J]. Int J Mol Epidemiol Genet, 2020, 11(2): 31-38. DOI: 10.2217/14622416.8.7.721.
17. Calvo AM, Zupelari-Gonçalves P, Dionísio TJ, et al. Efficacy of piroxicam for postoperative pain after lower third molar surgery associated with CYP2C8*3 and CYP2C9[J]. J Pain Res, 2017, 10: 1581-1589. DOI: 10.2147/JPR.S138147.
18. Sychev DA, Morozova TE, Shatskiy DA, et al. Effect of CYP2C9, PTGS-1 and PTGS-2 gene polymorphisms on the efficiency and safety of postoperative analgesia with ketoprofen[J]. Drug Metab Pers Ther, 2022, 37(4): 361-368. DOI: 10.1515/dmpt-2021-0222.
19. Kim YH, Kang P, Cho CK, et al. Physiologically based pharmacokinetic (PBPK) modeling for prediction of celecoxib pharmacokinetics according to CYP2C9 genetic polymorphism[J]. Arch Pharm Res, 2021, 44(7): 713-724. DOI: 10.1007/s12272-021-01346-2.
20. Theken KN, Lee CR, Gong L, et al. Clinical pharmacogenetics implementation consortium guideline (CPIC) for CYP2C9 and nonsteroidal anti-inflammatory drugs[J]. Clin Pharmacol Ther, 2020, 108(2): 191-200. DOI: 10.1002/cpt.1830.
21. Dawidowicz M, Kula A, Świętochowski P. Assessment of the impact of PTGS1, PTGS2 and CYP2C9 polymorphisms on pain, effectiveness and safety of NSAID therapies[J]. Postepy Hig Med Dosw, 2020, 74: 504-516. DOI: 10.5604/ 01.3001.0014.5497.
22. Kapur BM, Lala PK, Shaw JL. Pharmacogenetics of chronic pain management[J]. Clin Biochem, 2014, 47(13-14): 1169-1187. DOI: 10.1016/j.clinbiochem.2014.05.065.
23. 刘岩, 刘艳霞, 曲颖, 等. 环氧化酶基因多态性与阿司匹林抵抗及心血管事件发生的相关性研究[J]. 中国临床保健杂志, 2021, 24(3): 320-323. [Liu Y, Liu YX, Qu Y, et al. The correlation between COX gene polymorphism and aspirin resistance, cardiovascular events[J]. Chinese Journal of Clinical Healthcare, 2021, 24(3): 320-323.] DOI: 10.3969/J.issn. 1672-6790.2021.03.007.
24. Yi X, Cheng W, Lin J, et al. Interaction between COX-1 and COX-2 variants associated with aspirin resistance in Chinese stroke patients[J]. J Stroke Cerebrovasc Dis, 2016, 25(9): 2136-2144. DOI: 10.1016/j.jstrokecerebrovasdis.2016.05.039.
25. Kirac D, Yaman AE, Doran T, et al. COX-1, COX-2 and CYP2C19 variations may be related to cardiovascular events due to acetylsalicylic acid resistance[J]. Mol Biol Rep, 2022, 49(4): 3007-3014. DOI: 10.1007/s11033-022-07124-7.
26. Halushka MK, Walker LP, Halushka PV. Genetic variation in cyclooxygenase 1: effects on response to aspirin[J]. Clin Pharmacol Ther, 2003, 73(1): 122-130. DOI: 10.1067/mcp.2003.1.
27. Pettinella C, Romano M, Stuppia L, et al. Cyclooxygenase-1 haplotype C50T/A-842G does not affect platelet response to aspirin[J]. Thromb Haemost, 2009, 101(4): 687-690. DOI: 10.1160/TH08-11-0753.
28. Lee SJ, Park MK, Shin DS, et al. Variability of the drug response to nonsteroidal anti-inflammatory drugs according to cyclooxygenase-2 genetic polymorphism[J]. Drug Des Devel Ther, 2017, 11: 2727-2736. DOI: 10.2147/DDDT.S143807.
29. Wang Y, Yi XD, Lu HL. Influence of CYP2C9 and COX-2 genetic polymorphisms on clinical efficacy of non-steroidal anti-inflammatory drugs in treatment of ankylosing spondylitis[J]. Med Sci Monit, 2017, 23: 1775-1782. DOI: 10.12659/msm.900271.
30. Lee YS, Kim H, Wu TX, et al. Genetically mediated interindividual variation in analgesic responses to cyclooxygenase inhibitory drugs[J]. Clin Pharmacol Ther, 2006, 79(5): 407-418. DOI: 10.1016/j.clpt.2006.01.013.
31. Weng Z, Li X, Li Y, et al. The association of four common polymorphisms from four candidate genes (COX-1, COX- 2, ITGA2B, ITGA2) with aspirin insensitivity: a Meta-analysis[J]. PLoS One, 2013, 8(11): e78093. DOI: 10.1371/journal.pone.0078093.
32. 汤子婧, 潘瑜, 丁峰. 肠道微生物与血液净化[J]. 华西医学, 2023, 38(7): 974-978. [Tang ZJ, Pan Y, Ding F. Gut microbiome and blood purification[J]. West China Medical Journal, 2023, 38(7): 974-978.] DOI: 10.7507/1002-0179. 202306136.
33. Vich Vila A, Collij V, Sanna S, et al. Impact of commonly used drugs on the composition and metabolic function of the gut microbiota[J]. Nat Commun, 2020, 11(1): 362. DOI: 10.1038/s41467-019-14177-z.
34. Flowers SA, Bhat S, Lee JC. Potential implications of gut microbiota in drug pharmacokinetics and bioavailability[J]. Pharmacotherapy, 2020, 40(7): 704-712. DOI: 10.1002/phar.2428.
35. Kashyap PC, Chia N, Nelson H, et al. Microbiome at the frontier of personalized medicine[J]. Mayo Clin Proc, 2017, 92(12): 1855-1864. DOI: 10.1016/j.mayocp.2017.10.004.
36. Liang X, Bittinger K, Li X, et al. Bidirectional interactions between indomethacin and the murine intestinal microbiota[J]. Elife, 2015, 4: e08973. DOI: 10.7554/eLife. 08973.
37. Jourova L, Anzenbacher P, Matuskova Z, et al. Gut microbiota metabolizes nabumetone in vitro: consequences for its bioavailability in vivo in the rodents with altered gut microbiome[J]. Xenobiotica, 2019, 49(11): 1296-1302. DOI: 10.1080/00498254.2018.1558310.