Objective To examine the research hotpots and future trends within the realms of anti-infective drug-induced nephrotoxicity on a global scale over the previous decade.
Methods Based on bibliometric methods, the literature related to anti-infective drug-induced nephrotoxicity from January 1, 2014 to October 1, 2024 was screened using the Web of Science (WOS) core collection database. The VOSviewer software was employed to statistically analyze the number of publications and citation frequency among countries, authors, institutions, and journals referenced in the literature. Additionally, the CiteSpace software was utilized to generate a keyword co-occurrence network map and conduct cluster analysis of keywords.
Results A total of 4 069 relevant articles were retrieved in the present study, of which the United States was the country with the largest number of publications (1,113 articles) and Professor Li Jian's team was the leader in this particular area with 51 articles. Monash University and the Antimicrobial Agents and Chemotherapy were identified as the most prominent institution and journal in this field, respectively. Keyword analysis revealed a predominant focus on the mechanisms underlying acute kidney injury (AKI) induced by four anti-infective drugs vancomycin, aminoglycosides, polymyxins and β-lactams in the field of study.
Conclusion In the past 10 years, there has been a steady rise in the citation frequency of research on AKI related to anti-infective drugs. Current studies have identified molecular signaling pathways, particularly those involving oxidative stress and apoptosis, as prominent areas of investigation. Future research is likely to focus on elucidating the molecular mechanisms of ferroptosis and necrosis, as well as identifying biomarkers for early detection of nephrotoxicity.
1.Li J, Sexton PM. Targeting antibiotic resistance: from diagnostics to novel antibiotics[J]. ACS Pharmacol Transl Sci, 2020, 3(3): 371-372. DOI: 10.1021/acsptsci.0c00053.
2.Campbell RE, Chen CH, Edelstein CL. Overview of antibiotic-induced nephrotoxicity[J]. Kidney International Reports, 2023, 8(11): 2211-2225. DOI: 10.1016/j.ekir.2023.08.031.
3.Abishek A, Venkateswaramurthy N. A review on antibiotics induced nephrotoxicity[J]. Int J Basic Clin Pharmacol, 2023, 12(4): 600-606. DOI: 10.18203/2319-2003.ijbcp20231899.
4.刘晓爽, 唐占明, 李慧君, 等. 基于CiteSpace的陈皮知识图谱可视化分析[J]. 中草药, 2024, 55(14): 4836-4848. [Liu XS, Tang ZM, Li HJ, et al. Visualisation and analysis of Chenpi knowledge graph based on CiteSpace[J]. Chinese Traditional and Herbal Drugs, 2024, 55(14): 4836-4848.] DOI: 10.7501/j.issn.0253-2670.2024.14.020.
5.Xie C, Gu Y, Wang Y, et al. Research status and hotspots of medication safety in older adults: a bibliometric analysis[J]. Front Public Health, 2022, 10: 967227. DOI: 10.3389/fpubh.2022.967227.
6.康焱红, 王金星, 方芳, 等. 血府逐瘀汤研究文献可视化分析[J]. 中国中医药信息杂志, 2023, 30(7): 56-61. [Kang YH, Wang JX, Fang F, et al. Visualisation and analysis of the research literature on Xuefu Zhuyu Tang[J]. China Journal of Traditional Chinese Medicine Information, 2023, 30(7): 56-61.] DOI: 10.19879/j.cnki.1005-5304.202211681.
7.Zyoud S H. Analyzing global research trends and focal points of pyoderma gangrenosum from 1930 to 2023: visualization and bibliometric analysis[J]. J Transl Med, 2024, 22(1): 508. DOI: 10.1186/s12967-024-05306-4.
8.Gusenbauer M. Beyond Google Scholar, Scopus, and Web of Science: an evaluation of the backward and forward citation coverage of 59 databases' citation indices[J]. Res Synth Methods, 2024, 15(5): 802-817. DOI: 10.1002/jrsm.1729.
9.杨杨阳, 丁千, 周子振, 等. 基于文献计量学的畜禽养殖废水处理研究现状及发展趋势[J]. 环境工程技术学报, 2024, 14(2): 651-662. [Yang YY, Ding Q, Zhou ZZ, et al. Research status and development trend of livestock and poultry wastewater treatment based on bibliometrics[J]. Journal of Environmental Engineering Technology, 2024, 14(2): 651-662.] DOI: 10.12153/j.issn.1674-991X.20230495.
10.赵盾, 祁令臣, 徐金凡, 等. 膝骨关节炎疼痛领域热点与前沿的可视化分析[J]. 中国组织工程研究, 2025, 29(15): 3280-3289. [Zhao D, Qi LC, Xu JF, et al. Visualisation of hotspots and frontiers in the field of knee osteoarthritis pain[J]. Chinese Tissue Engineering Research, 2025, 29(15): 3280-3289.] https://www.cnki.com.cn/Article/CJFDTOTAL-XDKF202515027.htm.
11.陈悦, 陈超美, 刘则渊, 等. CiteSpace知识图谱的方法论功能 [J]. 科学学研究, 2015, 33(2): 242-253. [Chen Y, Chen CM, Liu ZY, et al. Methodological functions of CiteSpace knowledge graph[J]. Studies in Science of Science, 2015, 33(2): 242-253.] DOI: 10.16192/j.cnki.1003-2053.2015.02.009.
12.Song L, Liang J, Wang W, et al. Global trends in research of mitochondrial biogenesis over past 20 years: a bibliometric analysis[J]. Oxid Med Cell Longev, 2023, 2023: 7291284. DOI: 10.1155/2023/7291284.
13.Viana TQ, Rodrigues PJN. Análise de lesão renal em pacientes de terapia intensiva com diagnóstico de COVID-19 em uso de antibióticos[J]. Res, Soc Devel, 2022, 11(1): e27411124961. DOI: 10.33448/rsd-v11i1.24961.
14.Rizo Topete L, Gomez R, Contreras V, et al. MO319: AKI in patients with COVID-19 supported on ECMO: a single center experience in mexico[J]. Nephrol Dial Transplant, 2022, 37(Supplement_3): gfac068.029. DOI: 10.1093/ndt/gfac068.029.
15.Suk P, Rychlíčková J, Součková L, et al. Changes of colistin pharmacokinetics in critically ill patients due to the extracorporeal membrane oxygenation: protocol for the COL-ECMO2022 trial-a prospective, non-randomised, open-label phase IV pharmacokinetic clinical trial[J]. BMJ Open, 2023, 13(7): e071649. DOI: 10.1136/bmjopen-2023-071649.
16.Morales-Alvarez MC. Nephrotoxicity of antimicrobials and antibiotics[J]. Adv Chronic Kidney Dis, 2020, 27(1): 31-37. DOI: 10.1053/j.ackd.2019.08.001.
17.de Wilde SP, Buijtels PCAM, Jong E, et al. Gentamicin associated nephrotoxicity under antibiotic stewardship program handling[J]. Infect Dis (London), 2021, 53(12): 959-962. DOI: 10.1080/23744235.2021.1941240.
18.Perazella MA, Rosner MH. Drug-induced acute kidney injury[J]. Clin J Am Soc Nephrol: CJASN, 2022, 17(8): 1220-1233. DOI: 10.2215/CJN.11290821.
19.Park SJ, Lim NR, Park HJ, et al. Evaluation of risk factors for vancomycin-induced nephrotoxicity[J]. Int J Clin Pharm, 2018, 40(5): 1328-1334. DOI: 10.1007/s11096-018-0634-8.
20.Wagner P, Arnold J, Sheridan K. Vancomycin loading doses and nephrotoxicity on medicine teaching services[J]. Int J Gen Med, 2022, 15: 7685-7692. DOI: 10.2147/IJGM.S380017.
21.Kan WC, Chen YC, Wu VC, et al. Vancomycin-associated acute kidney injury: a narrative review from pathophysiology to clinical application[J]. Int J Mol Sci, 2022, 23(4): 2052. DOI: 10.3390/ijms23042052.
22.Sydney JR, Fekadu F, Kimberly AZ, et al. Assessing the incidence of acute kidney injury with combination vancomycin and piperacillin-tazobactam therapy compared to that of vancomycin and cefepime[J]. Int J Sci Res Arc, 2021, 2(1): 143-148. DOI: 10.30574/ijsra.2021.2.1.0040.
23.Jafari F, Elyasi S. Prevention of colistin induced nephrotoxicity: a review of preclinical and clinical data[J]. Expert Rev Clin Pharmacol, 2021, 14(9): 1113-1131. DOI: 10.1080/17512433.2021.1933436.
24.Azad MAK, Nation RL, Velkov T, et al. Mechanisms of polymyxin-induced nephrotoxicity[J]. Adv Exp Med Biol, 2019, 2019, 1145: 305-319. DOI: 10.1007/978-3-030-16373-0_18.
25.Hamdy S, Elshopakey GE, Risha EF, et al. Curcumin mitigates gentamicin induced-renal and cardiac toxicity via modulation of Keap1/Nrf2, NF-κB/iNOS and Bcl-2/BAX pathways[J]. Food Chem Toxicol, 2024, 183: 114323. DOI: 10.1016/j.fct.2023.114323.
26.Güller P, Budak H, Şişecioğlu M, et al. An in vivo and in vitro comparison of the effects of amoxicillin, gentamicin, and cefazolin sodium antibiotics on the mouse hepatic and renal glutathione reductase enzyme[J]. J Biochem Mol Toxicol, 2020, 34(7): e22496. DOI: 10.1002/jbt.22496.
27.Naraki K, Rahbardar MG, Razavi BM, et al. he power of trans-sodium crocetinate: exploring its renoprotective effects in a rat model of colistin-induced nephrotoxicity[J]. Naunyn Schmiedebergs Arch Pharmacol, 2024, 397(12): 10155-10174. DOI: 10.1007/s00210-024-03259-5.
28.George M, Reddy AP, Reddy PH, et al. Unraveling the NRF2 confusion: distinguishing nuclear respiratory factor 2 from nuclear erythroid factor 2[J]. Ageing Res Rev, 2024, 98: 102353. DOI: 10.1016/j.arr.2024.102353.
29.Guo Q, Jin Y, Chen X, et al. NF-κB in biology and targeted therapy: new insights and translational implications[J]. Signal Transduct Target Ther, 2024, 9(1): 53. DOI: 10.1038/s41392-024-01757-9.
30.Xiao G, Yuan F, Deng Y, et al. Polymyxin B exerts nephrotoxicity effects via inhibition of the Nrf2/NQO1 pathway-mediated antioxidant response[J]. J Biochem Mol Toxicol, 2023, 37(6): e23344. DOI: 10.1002/jbt.23344.
31.Fan X, Gu W, Gao Y, et al. Daphnetin ameliorated GM-induced renal injury through the suppression of oxidative stress and apoptosis in mice[J]. Int Immunopharmacol, 2021, 96: 107601. DOI: 10.1016/j.intimp.2021.107601.
32.Yin X, Gao Q, Li C, et al. Leonurine alleviates vancomycin nephrotoxicity via activating PPARγ and inhibiting the TLR4/NF-κB/TNF-α pathway[J]. Int Immunopharmacol, 2024, 131: 111898. DOI: 10.1016/j.intimp.2024.111898.
33.Botros SR, Matouk AI, Anter A, et al. Protective effect of empagliflozin on gentamicin-induced acute renal injury via regulation of SIRT1/NF-κB signaling pathway[J]. Environ Toxicol Pharmacol, 2022, 94: 103907. DOI: 10.1016/j.etap.2022.103907.
34.Casanova AG, Vicente-Vicente L, Hernández-Sánchez MT, et al. Key role of oxidative stress in animal models of aminoglycoside nephrotoxicity revealed by a systematic analysis of the antioxidant-to-nephroprotective correlation[J]. Toxicology, 2017, 385: 10-17. DOI: 10.1016/j.tox.2017.04.015.
35.Hu B, Gong Q, Chen S, et al. Protective effect of inhibiting necroptosis on gentamicin-induced nephrotoxicity[J]. FASEB J, 2022, 36(9): e22487. DOI: 10.1096/fj.202200163R.
36.Georgiev T, Nikolova G, Dyakova V, et al. Vitamin E and silymarin reduce oxidative tissue damage during gentamycin-induced nephrotoxicity[J]. Pharmaceuticals, 2023, 16(10): 1365. DOI: 10.3390/ph16101365.
37.Li H, Wang B, Wu S, et al. Ferroptosis is involved in polymyxin B-induced acute kidney injury via activation of p53[J]. Chem Biol Interact, 2023, 378: 110479. DOI: 10.1016/j.cbi.2023.110479.
38.Hart A, Cesar F, Zelnick LR, et al. Identification of prognostic biomarkers for antibiotic associated nephrotoxicity in cystic fibrosis[J]. J Cyst Fibros, 2023: S1569199323016715. DOI: 10.1016/j.jcf.2023.10.021.
39.Shady NMA, Mahmoud RM, Aziz AFA, et al. Serum cystatin c as a marker for acute kidney injury evaluation in neonates treated with colistin[J]. QJM: Int J Med, 2023, 116(Supplement_1): hcad069.633. DOI: 10.1093/qjmed/hcad069.633.
40.Petejova N, Martinek A, Zadrazil J, et al. Expression and 7-day time course of circulating microRNAs in septic patients treated with nephrotoxic antibiotic agents[J]. BMC Nephrol, 2022, 23(1): 111. DOI: 10.1186/s12882-022-02726-6.