Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 29,2025 No.12 Detail

Integrated network pharmacology and molecular docking to explore the potential molecular mechanisms of diosmin against prostatic hyperplasia complicated with chronic prostatitis

Published on Jan. 01, 2026Total Views: 5 times Total Downloads: 1 times Download Mobile

Author: TANG Liu 1 JIANG Xiao 1 LUO Guangwen 2 WANG Lei 3

Affiliation: 1. Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, China 2. Department of Pharmacy, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang Province, China 3. Department of Urology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang Province, China

Keywords: Diosmin Benign prostatic hyperplasia Chronic prostatitis Network pharmacology Molecular docking Signaling pathway GO funnction analysis KEGG pathway analysis

DOI: 10.12173/j.issn.2097-4922.202507074

Reference: TANG Liu, JIANG Xiao, LUO Guangwen, WANG Lei. Integrated network pharmacology and molecular docking to explore the potential molecular mechanisms of diosmin against prostatic hyperplasia complicated with chronic prostatitis[J]. Yaoxue QianYan Zazhi, 2025, 29(12): 1981-1989. DOI:10.12173/j.issn.2097-4922.202507074.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Objective  To explore the molecular mechanisms of diosmin in the treatment of prostatic hyperplasia complicated with chronic prostatitis by using network pharmacology and molecular docking technology.

Methods  The active targets of diosmin were predicted by PharmMapper, SEA, SuperPred, and TargetNet databases. Disease targets related to prostatic hyperplasia and chronic prostatitis were obtained through the GeneCards and GenCLiP 3 databases. These two kinds of targets were mapped to each other to obtain common targets. A protein-protein interaction (PPI) network was built with STRING database and Cytoscape software, and key targets were screened by MCODE and CytoHubba plug-ins. The enrichment analysis of Gene Ontology (GO) function and the Kyoto Gene and Genome Encyclopedia (KEGG) pathway was conducted using the DAVID database. Autodock Vina software was used to carry out the molecular docking verification of diosmin and key targets.

Results  A total of 69 targets of diosmin for the treatment of prostatic hyperplasia complicated with chronic prostatitis were obtained, among which HIF1A, IL-2, KDR, NFKB1, PTPN11, SERPINE1, SLC2A1and TLR4 were the key targets. KEGG pathway enrichment analysis revealed that the therapeutic effects of diosmin against prostatic hyperplasia complicated with chronic prostatitis mainly involved PI3K-Akt, HIF-1, Ras, IL-17, estrogen, MAPK and other signal pathways. The results of molecular docking showed that diosmin had strong binding activity with core targets.

Conclusions Diosmin could treat prostatic hyperplasia complicated with chronic prostatitis through multi-target and multi-channel synergy.

Full-text
Please download the PDF version to read the full text: download
References

1.盛正成, 沈天一, 唐朝朋, 等. 中国中老年良性前列腺增生/下尿路症状人群合并抑郁症的危险因素分析[J]. 中华男科学杂志, 2024, 30(12): 1105-1109. [Sheng ZC, Shen TY, Tang CP, et al. Risk factors for depression in middle-aged and elderly males with benign prostatic hyperplasia/lower urinary tract symptoms[J]. National Journal of Andrology, 2024, 30(12): 1105-1109.] DOI: 10.13263/j.cnki.nja.2024.12.008.

2.Inamura S, Terada N. Chronic inflammation in benign prostatic hyperplasia: pathophysiology and treatment options[J]. Int J Urol, 2024, 1(9): 968-974. DOI: 10.1111/iju.15518.

3.Gerges SH, Wahdan SA, Elsherbiny DA, et al. Pharmacology of diosmin, a citrus flavone glycoside: an updated review[J]. Eur J Drug Metab Pharmacokinet, 2022, 47(1): 1-18. DOI: 10.1007/s13318-021-00731-y.

4.Rahman L, Khalil AT, Shahid SA, et al. Diosmin: a promising phytochemical for functional foods, nutraceuticals and cancer therapy[J]. Food Sci Nutr, 2024, 12(9): 6070-6092. DOI: 10.1002/fsn3.4271.

5.王梓阳, 谢小平. 地奥司明片治疗ⅢA型前列腺炎的临床疗效观察[J]. 中国性科学, 2019, 28(4): 15-17. [Wang ZY, Xie XP. Clinical efficiency observation on diosmin in the treatment of type ⅢA prostatitis[J]. Chinese Journal of Human Sexuality, 2019, 28(4): 15-17.] DOI: 10.3969/j.issn.1672-1993.2019.04.004.

6.刘佳阳, 吴秋莲, 梁啦迪, 等. 盐酸坦索罗新联合地奥司明治疗慢性前列腺炎的疗效分析[J]. 中国医师杂志, 2019, 21(1): 116-119. [Liu JY, Wu QL, Liang LD, et al. Clinical analysis of tamsulosin hydrochloride combined with diosmin in the treatment of chronic prostatitis[J]. Journal of Chinese Physician, 2019, 21(1): 116-119.] DOI: 10.3760/cma.j.issn.1008-1372.2019.01.031.

7.黄朝友, 李响, 钱友良, 等. 地奥司明对前列腺增生伴前列腺炎患者HSP, CRP及PSA的影响[J]. 现代生物医学进展, 2017, 17(13): 2508-2511. [Huang CY, Li X, Qian YL, et al. Effect of diosmin on the serum heat shock protein, C reactive protein and PSA level in the treatment of the prostatic hyperplasia with prostatitis[J]. Progress in Modern Biomedicine, 2017, 17(13): 2508-2511.] DOI: 10.13241/j.cnki.pmb.2017.13.028.

8.Kim HJ, Park JW, Cho YS, et al. Pathogenic role of HIF-1α in prostate hyperplasia in the presence of chronic inflammation[J]. Biochim Biophys Acta, 2013, 1832(1): 183-194. DOI: 10.1016/j.bbadis.2012.09.002.

9.Zhang T, Mao C, Chang Y, et al. Hypoxia activates the hypoxia-inducible factor-1α/vascular endothelial growth factor pathway in a prostatic stromal cell line: a mechanism for the pathogenesis of benign prostatic hyperplasia[J]. Curr Urol, 2024, 18(3): 185-193. DOI: 10.1097/CU9.0000000000000233.

10.Akdere H, Bilir B, Kuvan HC, et al. Interleukins in urological diseases[J]. Discov Med, 2025, 37(195): 647-658. DOI: 10.24976/Discov.

11.Cao T, Xie F, Shi Y, et al. Rapamycin and low-dose IL-2 mediate an immunosuppressive microenvironment to inhibit benign prostatic hyperplasia[J]. Int J Biol Sci, 2023, 19(11): 3441-3455. DOI: 10.7150/ijbs.85089.

12.关胜, 曹林升. 合并前列腺炎的前列腺增生组织中COX-2、VEGF的表达[J]. 国际泌尿系统杂志, 2010, 30(3): 300-304. [Guan S, Cao LS. Expression of COX-2 and VEGF in benign prostatic hyperplasia combined with prostatitis[J]. International Journal of Urinary System, 2010, 30(3): 300-304.] DOI: 10.3760/cma.j.issn.1673-4416.2010.03.005.

13.Naiyila X, Li J, Huang Y, et al. A novel insight into the immune-related interaction of inflammatory cytokines in benign prostatic hyperplasia[J]. J Clin Med, 2023, 12(5): 1821. DOI: 10.3390/jcm12051821.

14.彭敏峰, 沈建根. 含C-src同源序列的酪氨酸磷酸酶SHP-2和SHP-1在前列腺增生组织重构中的表达[J]. 浙江大学学报(医学版), 2007, 36(5): 488-492. [Peng MF, Shen JG. Expression of tyrosine phosphatase containing C-src homology SH-2 in benign prostate hyperplasia[J]. Journal of Zhejiang University (Medical Sciences), 2007, 36(5): 488-492.] DOI: 10.3785/j.issn.1008-9292.2007.05.014.

15.Li L, Li F, Xu Z, et al. Identification and validation of SERPINE1 as a prognostic and immunological biomarker in pan-cancer and in ccRCC[J]. Front Pharmacol, 2023, 14: 1213891. DOI: 10.3389/fphar.2023.1213891.

16.张燕宇, 王婧, 黄艺顺. NF-κB信号通路与前列腺炎、前列腺癌形成的关系[J]. 中国药学杂志, 2020, 55(20): 1653-1658. [Zhang YY, Wang J, Huang YS, et al. Relationship among NF-κB signaling pathways, prostatitis and prostate cancer[J]. Chinese Pharmaceutical Journal, 2020, 55(20): 1653-1658.] DOI: 10.11669/cpj.2020.20.001.

17.Li J, Chen B, Huang Y, et al. TNF-α modulates cell proliferation via SOX4/TGF-β/Smad signaling in benign prostatic hyperplasia[J]. Cell Death Dis, 2025, 16(1): 472. DOI: 10.1038/s41419-025-07783-x.

18.Yan S, Wang Y, Chen M, et al. Deregulated SLC2A1 promotes tumor cell proliferation and metastasis in gastric cancer[J]. Int J Mol Sci, 2015, 16(7): 16144-16157. DOI: 10.3390/ijms160716144.

19.Sacca PA, Calvo JC. Periprostatic adipose tissue microenvironment: metabolic and hormonal pathways during prostate cancer progression[J]. Front Endocrinol (Lausanne), 2022, 13: 863027. DOI: 10.3389/fendo.2022.863027.

20.He Y, Ou Z, Chen X, et al. LPS/TLR4 signaling enhances TGF-beta response through downregulating BAMBI during prostatic hyperplasia[J]. Sci Rep, 2016, 6: 27051. DOI: 10.1038/srep27051.

21.Xu S, Chen J, Yue S, et al. Alcohol intake exacerbates experimental autoimmune prostatitis through activating PI3K/AKT/mTOR pathway-mediated Th1 differentiation[J]. Front Immunol, 2024, 15: 1512456. DOI: 10.3389/fimmu.2024.1512456.

22.Wang R, Qu Z, Lv Y, et al. Important roles of PI3K/AKT signaling pathway and relevant inhibitors in prostate cancer progression[J]. Cancer Med, 2024, 13(21): e70354. DOI: 10.1002/cam4.70354.

23.Zhang T, Mao C, Chang Y, et al. Hypoxia activates the hypoxia-inducible factor-1alpha/vascular endothelial growth factor pathway in a prostatic stromal cell line: a mechanism for the pathogenesis of benign prostatic hyperplasia[J]. Curr Urol, 2024, 18(3): 185-193. DOI: 10.1097/CU9.0000000000000233.

24.Yeh YH, Hsiao HF, Yeh YC, et al. Inflammatory interferon activates HIF-1α-mediated epithelial-to-mesenchymal transition via PI3K/AKT/mTOR pathway[J]. J Exp Clin Cancer Res, 2018, 37(1): 70. DOI: 10.1186/s13046-018-0730-6.

25.Cai T, Santi R, Tamanini I, et al. Current knowledge of the potential links between inflammation and prostate cancer[J]. Int J Mol Sci, 2019, 20(15): 3833. DOI: 10.3390/ijms20153833.

26.Wang Y, Lao Y, Li R, et al. Network pharmacological analysis and experimental study of melatonin in chronic prostatitis/chronic pelvic pain syndrome[J]. Naunyn Schmiedebergs Arch Pharmacol, 2024, 397(11): 8691-8706. DOI: 10.1007/s00210-024-03183-8.

27.Zhang C, Chen J, Wang H, et al. IL-17 exacerbates experimental autoimmune prostatitis via CXCL1/CXCL2-mediated neutrophil infiltration[J]. Andrologia, 2022, 54(8): e14455. DOI: 10.1111/and.14455.

28.Lo HC, Yu DS, Gao HW, et al. IL-27/IL-27RA signaling may modulate inflammation and progression of benign prostatic hyperplasia via suppressing the LPS/TLR4 pathway[J]. Transl Cancer Res, 2020, 9(8): 4618-4634. DOI: 10.21037/tcr-20-1509.

29.Khristi V, Ghosh S, Chakravarthi VP, et al. Transcriptome data analyses of prostatic hyperplasia in Esr2 knockout rats[J]. Data Brief, 2019, 24: 103826. DOI: 10.1016/j.dib.2019.103826.

30.刘占良, 牛亦农. 性激素与良性前列腺增生关系的研究进展[J]. 泌尿外科杂志(电子版), 2021, 13(2): 96-99. [Liu  ZL, Niu YN. Research progress on the relationship between sex hormones and benign prostatic hyperplasia[J]. Journal of Urology (Electronic Edition), 2021, 13(2): 96-99. DOI: 10.3969/j.issn.1674-7410.2021.02.021.

31.贾玉玲, 崇立明, 李雷, 等. 雄激素对雌激素引发去势雄性SD大鼠前列腺炎症及炎症因子的抑制作用[J]. 中国药理学与毒理学杂志, 2017, 31(6): 568-573. [Jia YL, Chong LM, Li L, et al. Inhibitory effect of androgen on prostate inflammation and inflammatory factors in castrated male SD rats induced by estrogen[J]. Chinese Journal of Pharmacology and Toxicology, 2017, 31(6): 568-573.] DOI: 10.3867/j.issn.1000-3002.2017.06.011.

32.Xiao H, Jiang Y, He W, et al. Identification and functional activity of matrix-remodeling associated 5 (MXRA5) in benign hyperplastic prostate[J]. Aging (Albany NY), 2020, 12(9): 8605-8621. DOI: 10.18632/aging.103175.

33.Zhang F, Feng R, Meng T, et al. MIF regulates T helper 17 cell differentiation by activating the p38 MAPK signaling pathway to drive the pathogenesis of EAP[J]. Int Immunopharmacol, 2025, 159: 114959. DOI: 10.1016/j.intimp.2025.114959.

Popular papers
Last 6 months