Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 29,2025 No.12 Detail

Investigating the effects of silibinin on proliferation, apoptosis, migration, invasion, and ferroprelation of HepG2 hepatocellular carcinoma cells based on network pharmacology

Published on Jan. 01, 2026Total Views: 8 times Total Downloads: 1 times Download Mobile

Author: DING Houwei SHENG Hua ZHANG Ping CHEN Meihui

Affiliation: Department of Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University General Hospital of Eastern Theater Command, Nanjing 210014, China

Keywords: Silibinin Liver cancer Cell proliferation Cell apoptosis Cell migration Cell invasion Ferroptosis Network pharmacology

DOI: 10.12173/j.issn.2097-4922.202510015

Reference: DING Houwei, SHENG Hua, ZHANG Ping, CHEN Meihui. Investigating the effects of silibinin on proliferation, apoptosis, migration, invasion, and ferroprelation of HepG2 hepatocellular carcinoma cells based on network pharmacology[J]. Yaoxue QianYan Zazhi, 2025, 29(12): 1990-1999. DOI: 10.12173/j.issn.2097-4922.202510015.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Objective  To investigate the effects of silibinin on proliferation, apoptosis, migration, invasion and ferroptosis of liver cancer HepG2 cells, and to verify the regulatory mechanisms of ferroptosis based on network pharmacology and experimental validation.

Methods  Following silibinin intervention in HepG2 cells, cell viability was assessed using CCK-8 assay, apoptosis levels were measured using Hochest staining, cell migration and invasion capabilities were evaluated through scratch assays and Transwell assays, ROS level was measured using DCFH-DA probe, mitochondrial membrane potential was assessed using JC-1 staining, and Fe2+ levels were detected by FerroOrange probe. Online databases were used to obtain silibinin, liver cancer, and ferroptosis targets, with subsequent analysis of intersecting targets through PPI network analysis, GO and KEGG enrichment analysis. After intervention with silybin alone and treatment with GN44028, Western Blot was used to detect the protein expression levels of hypoxia-inducible factor 1α (HIF-1α) and glutathione peroxidase 4 (GPX4).

Results  The semi-inhibitory concentration of silibinin for inhibiting HepG2 cell was 87.97 μmol/L, with a dose-dependent inhibitory effect. Compared to control HepG2 cells, silibinin promoted cell apoptosis, significantly inhibited cell scratch closure ability (P<0.05), reduced the number of migrating and invading cells (P<0.05), elevated intracellular ROS and Fe2+ levels, and induced mitochondrial membrane potential polarization. The intersecting targets of silibinin, liver cancer, and ferroptosis were identified as HIF-1α, mTOR, SRC, NRAS, PIK3CA, TERT, CA9, MAPK14, PARP-1, and PGD. Compared to control HepG2 cells, silibinin significantly increased the expression of HIF-1α in cells and decreased the expression of GPX4 (P<0.05). GN44028 can reverse the increase in Fe2+ concentration, the reduction in GPX4 expression, and the decrease in cell viability induced by silibinin in HepG2 cells.

Conclusion  Silibinin can inhibit the proliferation, migration, and invasion of HepG2 cells, induce apoptosis and ferroptosis, which may be related to its activation of HIF-1 α and subsequent inhibition of GPX4 expression.

Full-text
Please download the PDF version to read the full text: download
References

1.Foda ZH, Annapragada AV, Boyapati K, et al. Detecting liver cancer using cell-free DNA fragmentomes[J]. Cancer Discov, 2023, 13(3): 616-631. DOI: 10.1158/2159-8290.CD-22-0659.

2.陈建国, 张永辉, 陆建华, 等. 中国肝癌预防与筛检工作实践及防控挑战[J]. 中国肿瘤, 2023, 32(11): 836-847. [Chen JG, Zhang YH, Lu JH, et al. Liver cancer prevention and screening in China: practices and challenges[J]. China Cancer, 2023, 32(11): 836-847.] DOI: 10.11735/j.issn.1004-0242.2023.11.A005.

3.Anwanwan D, Singh SK, Singh S, et al. Challenges in liver cancer and possible treatment approaches[J]. Biochim Biophys Acta Rev Cancer, 2020, 1873(1): 188314. DOI: 10.1016/j.bbcan.2019.188314.

4.张静, 李静, 扈杰. 全球抗肿瘤药物专利信息情报分析[J]. 中国新药杂志, 2023, 32(23): 2375-2384. [Zhang J, Li J, Hu, J. Patent information analysis of global antitumor drugs[J]. Chinese Journal of New Drugs, 2023, 32(23): 2375-2384.] DOI: 10.3969/j.issn.1003-3734.2023.23.008.

5.王为兰, 刘晓颖, 刘福君, 等. 天然产物活性成分抗肝癌分子机制的研究进展[J]. 天然产物研究与开发, 2020, 32(9):1606-1613. [Wang WL, Liu XY, Liu FJ, et al. Review on molecular mechanism of active components from natural products against hepatocellular carcinoma[J]. NatProd Res Dev, 2020, 32: 1606-1613.] DOI: 10.16333/j.1001-6880.2020.9.020.

6.陈曦, 李靖, 朱玲, 等. 积雪草酸联合奥沙利铂对结肠癌HCT116细胞凋亡、自噬和焦亡的调控作用研究[J]. 中国医院药学杂志, 2022, 42(3): 274-280. [Chen X, Li J, Zhu L, et al. Effects of asiatic acid combined with oxaliplatin on the apoptosis, autophagy and pyroptosis of colon cancer HCT116 cells[J]. Chinese Journal of Hospital Pharmacy, 2022, 42(3): 274-280.] DOI: 10.13286/j.1001-5213.2022.03.09.

7.金源源, 麦静愔, 平键, 等. 苍术酮对人肝癌细胞MHCC97-H增殖、迁移、侵袭、凋亡的影响及机制研究[J]. 中药新药与临床药理, 2023, 34(10): 1370-1376. [Jin YY, Mai JY, Ping  J, et al. Effects and mechanisms of atractylone on proliferation,migration,invasion and apoptosis of human hepatocellular carcinoma cells MHCC97-H[J]. Traditional Chinese Drug Research & Clinical Pharmacology, 2023, 34(10): 1370-1376.] DOI: 10.19378/j.issn.1003-9783.2023.10.006.

8.Xu HJ, Ye D, Ren ML, et al. Ferroptosis in the tumor microenvironment: perspectives for immunotherapy[J]. Trends Mol Med, 2021, 27(9): 856-867. DOI: 10.1016/j.molmed.2021.06.014.

9.洪婷, 王依蕾, 曾海荣, 等. 葫芦素B诱导细胞铁死亡抑制肝癌Huh-7细胞增殖的机制[J]. 中国药理学通报, 2023, 39(4): 638-645. [Hong T, Wang YL, Zeng HR, et al. Mechanism of cucurbitacin B suppresses proliferation of hepatocellular carcinoma Huh-7 cells via inducing ferroptosis[J]. Chinese Pharmacological Bulletin, 2023, 39(4): 638-645.] DOI: 10.12360/CPB202103070.

10.王兰清, 李国, 朱宝. 水飞蓟宾对非酒精性脂肪性肝病相关肝癌的保护作用及其作用机制[J]. 解剖科学进展, 2023, 29(4): 423-426. [Wang LQ, Li G, Zhu B. Protective effect and mechanism of silibinin on non-alcoholic fattyliver disease associated hepatocellular carcinoma[J]. Progress of Anatomical Sciences, 2023, 29(4): 423-426.] DOI: 10.16695/j.cnki.1006-2947.2023.04.023.

11.Federico A, Dallio M, Loguercio C. Silymarin/silybin and chronic liver disease: a marriage of many years[J]. Molecules, 2017, 22(2): 191. DOI: 10.3390/molecules22020191.

12.Wadhwa K, Pahwa R, Kumar M, et al. Mechanistic insights into the pharmacological significance of silymarin[J]. Molecules, 2022, 27(16): 5327. DOI: 10.3390/molecules27165327.

13.Song XY, Liu PC, Liu WW, et al. Silibinin inhibits ethanol-or acetaldehyde-induced ferroptosis in liver cell lines[J]. Toxicol In Vitro, 2022, 82: 105388. DOI: 10.1016/j.tiv.2022.105388.

14.Wang WP, Dong XX, Liu Y, et al. Itraconazole exerts anti-liver cancer potential through the Wnt, PI3K/AKT/mTOR, and ROS pathways[J]. Biomed Pharmacother, 2020, 131: 110661. DOI: 10.1016/j.biopha.2020.110661.

15.潘慧杰, 张碧华, 王洋, 等. 水飞蓟宾胶囊对比护肝片改善脂肪肝相关生化指标有效性和安全性的系统评价[J]. 中国医院用药评价与分析, 2022, 22(1):64-69. [Pan HJ, Zhang  BH, Wang Y, et al. Systematic review of efficacy and safety of silibinin capsules and hugan tablets in improving fatty liver-related biochemical indicators[J]. Evaluation and Analysis of Drug-Use in Hospitals of China, 2022, 22(1):64-69.] DOI: 10.14009/j.issn.1672-2124.2022.01.014.

16.Yan BF, Zheng X, Wang Y, et al. Liposome-based silibinin for mitigating nonalcoholic fatty liver disease: dual effects via parenteral and intestinal routes[J]. ACS Pharmacol Transl Sci, 2023, 6(12): 1909-1923. DOI: 10.1021/acsptsci.3c00210.

17.Wu J, Wang Y, Jiang RT, et al. Ferroptosis in liver disease: new insights into disease mechanisms[J]. Cell Death Discov, 2021, 7(1): 276. DOI: 10.1038/s41420-021-00660-4.

18.Liao H, Shi JY, Wen K, et al. Molecular targets of ferroptosis in hepatocellular carcinoma[J]. J Hepatocell Carcinoma, 2021, 8: 985-996. DOI: 10.2147/JHC.S325593.

19.Ajoolabady A, Tang D, Kroemer G, et al. Ferroptosis in hepatocellular carcinoma: mechanisms and targeted therapy[J]. Br J Cancer, 2023, 128(2): 190-205. DOI: 10.1038/s41416-022-01998-x.

20.何山, 欧水平, 叶林虎, 等. 基于网络药理学和分子对接技术分析川楝子致肝毒性机制[J]. 现代药物与临床, 2023, 38(12): 2955-2964. [He S, Ou SP, Ye LH, et al. Hepatotoxicity mechanism of Toosendan Fructus based on network pharmacology and molecular docking techniques[J]. Drugs & Clinic, 2023, 38(12): 2955-2964.] DOI: 10.7501/j.issn.1674-5515.2023.12.007.

21.Lin ZH, Song JJ, Gao YK, et al. Hypoxia-induced HIF-1α/lncRNA-PMAN inhibits ferroptosis by promoting the cytoplasmic translocation of ELAVL1 in peritoneal dissemination from gastric cancer[J]. Redox Biol, 2022, 52: 102312. DOI: 10.1016/j.redox.2022.102312.

22.Wang K, Yu J, Luo Q, et al. siHIF-1α-loaded micellar nanoparticles inhibit M1 macrophage activation to ameliorate chronic rhinosinusitis[J]. Free Radic Biol Med, 2025, 237: 403-418. DOI: 10.1016/j.freeradbiomed.2025.05.433.

23.Chen BY, Pathak JL, Lin HY, et al. Inflammation triggers chondrocyte ferroptosis in TMJOA via HIF-1α/TFRC[J]. J Dent Res, 2024, 103(7): 712-722. DOI: 10.1177/00220345241242389.

24.蔡荟芝, 罗玲. 缺氧诱导因子1α通过介导铁死亡影响动脉粥样硬化的机制研究[J]. 实用心脑肺血管病杂志, 2024, 32(3): 70-76. [Cai HZ, Luo L. Mechanism of hypoxia-inducing factor 1α influencing atherosclerosis mediated by ferroptosis[J]. Practical Journal of Cardiac Cerebral Pneumal and Vascular Disease, 2024, 32(3): 70-76.] DOI: 10.12114/j.issn.1008-5971.2024.00.014.

25.Reinhardt K, Stückrath K, Hartung C, et al. PIK3CA-mutations in breast cancer[J]. Breast Cancer Res Treat, 2022, 196(3): 483-493. DOI: 10.1007/s10549-022-06637-w.

26.Zhang YL, Swanda RV, Nie LT, et al. mTORC1 couples cyst(e) ine availability with GPX4 protein synthesis and ferroptosis regulation[J]. Nat Commun, 2021, 12(1):1589. DOI: 10.1038/s41467-021-21841-w.

27.Dong H, Xia YY, Jin SL, et al. Nrf2 attenuates ferroptosis-mediated IIR-ALI by modulating TERT and SLC7A11[J]. Cell Death Dis, 2021, 12(11): 1027. DOI: 10.1038/s41419-021-04307-1.

28.Yunchu YC, Miyanaga A, Seike M. Integrative analysis of ferroptosis-related genes in small cell lung cancer for the identification of biomarkers and therapeutic targets[J]. Front Biosci (Landmark Ed), 2023, 28(6): 125. DOI: 10.31083/j.fbl2806125.

29.Shi JY, Wu P, Sheng L, et al. Ferroptosis-related gene signature predicts the prognosis of papillary thyroid carcinoma[J]. Cancer Cell Int, 2021, 21(1): 669. DOI: 10.1186/s12935-021-02389-7.

Popular papers
Last 6 months