Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 29,2025 No.12 Detail

The multi-target mechanism of Portulaca oleracea's hypoglycemic effect: network pharmacology prediction and molecular docking analysis

Published on Jan. 01, 2026Total Views: 10 times Total Downloads: 2 times Download Mobile

Author: HU Pingping 1, 2 XIA Wei 2 LI Yanpeng 1, 2 CHEN Ting 2 HE Juan 2

Affiliation: 1. School of Pharmacy, Dali University, Dali 671000, Yunnan Province, China 2. Department of Pharmacy, The 920th Hospital of Joint Logistic Support Force of PLA, Kunming 650032, China

Keywords: Portulaca oleracea Hypoglycaemia Network pharmacology Molecular docking Quercetin Kaempferol IL-6 TNF AKT1

DOI: 10.12173/j.issn.2097-4922.202507072

Reference: HU Pingping, XIA Wei, LI Yanpeng, CHEN Ting, HE Juan. The multi-target mechanism of Portulaca oleracea's hypoglycemic effect: network pharmacology prediction and molecular docking analysis[J]. Yaoxue QianYan Zazhi, 2025, 29(12): 2000-2008. DOI: 10.12173/j.issn.2097-4922.202507072.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Objective  To explore the effective active ingredients and molecular mechanism of the blood glucose-lowering effect of Portulaca oleracea based on network pharmacology and molecular docking technology.

Methods  The active ingredient targets of Portulaca oleracea were mapped to the disease targets of diabetes to obtain the intersection genes, and the "drug-ingredient-target" network diagram was constructed using Cytoscape 3.7.1 software. The protein-protein interaction (PPI) network of targets was constructed through the STRING online platform, and the core targets of the network were identified and analyzed using the BisoGenet and CytoNCA plugins. The GO and KEGG enrichment analyses were performed on potential target information using DAVID, and the obtained results were visualized using R language. The molecular docking was completed using AutoDock Vina 1.1.2 software, and the results were visually analyzed with PyMOL and Discovery Studio 2019 software.

Results  A total of 394 component targets corresponding to the 10 active ingredients were screened in the TCMSP database, and 191 potential therapeutic targets were obtained after mapping with 8 972 relevant targets for diabetes. The molecular docking results showed that the binding energies of the compounds (quercetin and kaempferol) to the core target proteins (IL-6, TNF and AKT1) were lower than -5 kcal/mol, indicating that the active ingredients had a better binding ability to the core targets.

Conclusion  Quercetin, kaempferol and other active ingredients in Portulaca oleracea can bind to core targets such as IL-6, TNF, AKT1 and other core targets to play a role in lowering blood glucose.

Full-text
Please download the PDF version to read the full text: download
References

1.Gurudas S, Vasconcelos JC, Prevost AT, et al. National prevalence of vision impairment and blindness and associated risk factors in adults aged 40 years and older with known or undiagnosed diabetes: results from the SMART-India cross-sectional study[J]. Lancet Glob Health, 2024, 12(5): e838-e847. DOI: 10.1016/s2214-109x(24)00035-4.

2.Farine F, Rapisarda AM, Roani C, et al. Predictive factors of amputation in diabetic foot[J]. Biomedicines, 2023, 11(3): 753-765. DOI: 10.3390/biomedicines12122775.

3.Basith S, Pham NT, Song M, et al. ADP-Fuse: a novel two-layer machine learning predictor to identify antidiabetic peptides and diabetes types using multiview information[J]. Comput Biol Med, 2023, 165: 107386. DOI: 10.1016/j.compbiomed.2023.107386.

4.郝晓红, 康晓清, 赵利敏, 等. 基于多状态Markov模型研究糖尿病前期进展为心血管疾病的影响因素[J]. 中国卫生统计, 2024, 41(5): 715-719. [Hao XH, Kang XQ, Zhao LM, et al. Study on influencing factors for progression from prediabetes to cardiovascular diseases based on a multi-state Markov model[J]. Chinese Journal of Health Statistics, 2024, 41(5): 715-719.] DOI: 10.11783/j.issn.1002-3674.2024.05.017.

5.WHO. Global Report on Diabetes[R]. Geneva: World Health Organization, 2016: 1-88.

6.Yu X, Lu JL, Li M, et al. Diabetes in China part 1: epidemiology and risk factors[J]. Lancet Public Health, 2024, 27(12): 1089-1097. DOI: 10.1016/s2468-2667(24)00250-0.

7.井岚花, 刘庆立. 柴芍六君子汤合半夏泻心汤加减对糖尿病患者血糖水平和临床症状的影响[J]. 内蒙古中医药, 2023, 42(11): 9-11. [Jing LH, Liu QL. Effect of Chaishao Liujunzi decoction and Banxia Xiexin decoction on blood glucose level and clinical symptoms in patients with diabetes mellitu[J]. Nei Mongol Journal of Traditional Chinese Medicine, 2023, 42(11): 9-11.]DOI: 10.16040/j.cnki.cn15-1101.2023.11.018.

8.明·李时珍, 著. 本草纲目(校点本)第二册[M]. 北京: 人民卫生出版社, 1982: 1653.

9.Lee JH, Park JE, Han JS. Portulaca oleracea L. extract reduces hyperglycemia via PI3k/Akt and AMPK pathways in the skeletal muscles of C57BL/Ksj-db/db mice[J]. J Ethnopharmacol, 2020, 260: 112973. DOI: 10.1016/j.jep.2020.112973.

10.中国药典2020年版. 一部[S]. 2020: 102.

11.Aziz WM, Ahmed SA, Shaker SE, et al. Portulaca oleracea L. seed extracts counteract diabetic nephropathy through SDF-1/IL10/PPARγ-mediated tuning of Keap1/Nrf2 and NF-κB transcription in sprague dawley rats[J]. Diabetol Metab Syndr, 2024, 16(1): 119. DOI: 10.1186/s13098-024-01330-y.

12.Liu F, Cui X, Duan Y, et al. A new alkaloid from Portulaca oleracea L. and its anti-inflammatory activity[J]. Nat Prod Res, 2022, 36(18): 4709-4713. DOI: 10.1080/14786419.2021.2000984.

13.Hadjzadeh M, Khodadadi H, Sohrabi F, et al. Protective effects of Portulaca oleracea and vitamin E on cardiovascular parameters in rats with subclinical hyperthyroidism[J]. Clin Exp Hypertens, 2022, 44(7): 663-669. DOI: 10.1080/10641963.2022.2112209.

14.Jalali J, Ghasemzadeh Rahbardar M. Ameliorative effects of Portulaca oleracea L. (purslane) on the metabolic syndrome: a review[J]. J Ethnopharmacol, 2022, 5: 299: 115672. DOI: 10.1016/j.jep.2022.115672.

15.Lee JH, Park JE, Han JS. Portulaca oleracea L. extract reduces hyperglycemia via PI3k/Akt and AMPK pathways in the skeletal muscles of C57BL/Ksj-db/db mice[J]. J Ethnopharmacol, 2020, 5: 260: 112973. DOI: 10.1016/j.jep.2020.112973.

16.Karimi G, Hosseinzadeh H, Ettehad N. Evaluation of the gastric antiulcerogenic effects of Portulaca oleracea L. extracts in mice[J]. Phytother Res, 2004, 18(6): 484-487. DOI: 10.1002/ptr.1463.

17.蒋芳华, 周婷, 喻璐, 等. 马齿苋保健颗粒剂的制备及其降糖作用的研究[J]. 湘南学院学报(医学版), 2016, 18(4): 22-25. [Jiang FH, Zhou T, Yu L, et al. A study on the purslane health granule preparation and its hypoglycemic effect[J]. Journal of Xiangnan University (Medical Sciences), 2016, 18(4): 22-25.] DOI: 10.16500/j.cnki.1673-498x.2016.04.007.

18.Ru J, Li P, Wang J, et al. TCMSP: a database of systems pharmacology for drug discove ry from herbal medicines[J]. J Cheminform, 2014, 6(1): 13. DOI: 10.1186/1758-2946-6-13.

19.Princilly J, Veerabhadrappa B, Rao NN, et al. Cellular senescence in aging: molecular basis, implications and therapeutic Interventions[J], Adv Protein Chem Struct Biol, 2023, 136: 1-33. DOI: 10.1016/bs.apcsb.2023.02.021.

20.Helman A, Avrahami D, Klochendler A, et al. Effects of ageing and senescence on pancreatic β-cell Function[J]. Diabetes Obes Metab, 2016, 18 Suppl 1: 58-62. DOI: 10.1111/dom.12719.

21.Wasaki K, Lalani B, Kahng J, et al. Decreased IGF1R attenuates senescence and improves function in pancreatic β-cells[J]. Front Endocrinol (Lausanne), 2023, 14: 1203534. DOI: 10.3389/fendo.2023.1203534.

22.Dennis G, Sherman BT, Hosack DA, et al. DAVID: database for annotation, visualization, and integrated discovery[J]. Genome Biol, 2003, 4(5): P3. https://pubmed.ncbi.nlm.nih.gov/12734009/.

23.王建礼, 杨作成, 王聪, 等. 槲皮素对糖尿病大鼠的降糖作用及机制研究[J]. 济宁医学院学报, 2018, 41(2): 135-138. [Wang JL, Yang ZC, Wang C, et al. The hypoglycemic effect and mechanism of quercetin for diabetic rats[J]. Journal of Jining Medical University, 2018, 41(2): 135-138.] DOI: 10.3969/j.issn.1000-9760.2018.02.013.

24.Wei J, Luo T, Wang Y, et al. Screening differential hub genes related with the hypoglycemic effect of quercetin through data mining[J]. Curr Bioinform, 2021, 16(9): 1152-1160. DOI: 10.2174/1574893616666210617110314.

25.Rahmani AH, Alsahli MA, Khan AA, et al. Quercetin, a plant flavonol attenuates diabetic complications, renal tissue damage, renal oxidative stress and inflammation in streptozotocin-induced diabetic rats[J]. Metabolites, 2023, 13(1): 130. DOI: 10.3390/metabo13010130.

26.Alkhalidy H, Moore W, Wang A, et al. Kaempferol ameliorates hyperglycemia through suppressing hepatic gluconeogenesis and enhancing hepatic insulin sensitivity in diet-induced obese mice[J]. J Nutr Biochem, 2018, 58: 90-101. DOI: 10.1016/j.jnutbio.2018.04.014.

27.Li H, Kim U, Yoon J, et al. Suppression of hyperglycemia and hepatic steatosis by black-soybean-leaf extract via enhanced adiponectin-receptor signaling and AMPK activation[J]. J Agric Food Chem, 2019, 67(1): 90-101. DOI: 10.1021/acs.jafc.8b04527.

28.Lee AS, Kim JS, Lee YJ, et al. Anti-TNF-α activity of Portulaca oleracea in vascular endothelial cells.[J]. Int J Mol Sci, 2012, 13(5): 5628-5644. DOI: 10.3390/ijms13055628.

29.Miao L, Tao H, Peng Y, et al. The anti-inflammatory potential of Portulaca oleracea L.(purslane)extract by partial suppression on NF-κB and MAPK activation[J]. Food Chem, 2019, 11(8): 1175-1191. DOI: 10.1016/j.foodchem.2019.04.005.

30.Lehrskov LL, Lyngbaek MP, Soederlund L, et al. Interleukin-6 delays gastric emptying in humans with direct effects on glycemic control[J]. Cell Metab, 2018, 27(6): 1201-1211. DOI: 10.1016/j.cmet.2018.04.008.

31.Wueest S, Laesser CI, Böni-Schnetzler M, et al. IL-6-type cytokine signaling in adipocytes induces intestinal GLP-1 secretion[J]. Diabetes, 2017, 170(6): 3263-3272. DOI: 10.2337/db17-0637.

32.Li Y, Chen S, Liu Y, et al. PI3KR1 and AKT1 in largemouth bass (micropterus salmoides): molecular cloning, characterization, and its involvement in the alleviation of hepatic glycogen deposition caused by insulin inclusion in vitro[J]. Fish Physiol Biochem, 2024, 49(5): 1247-1258. DOI: 10.1007/s10695-024-01379-6.

33.Araki K, Miyoshi Y. Mechanism of resistance to endocrine therapy in breast cancer: the important role of PI3K/Akt/mTOR in estrogen receptor-positive, HER2-negative breast cancer[J]. Breast Cancer, 2017, 25(4): 392-401. DOI: 10.1007/s12282-017-0812-x.

Popular papers
Last 6 months