Objective To study the molecular mechanism of Ziyabiti tablets in the treatment of type 2 diabetes (T2DM) by network pharmacology.
Methods The chemical components and related targets of Ziyabiti tablets were obtained from TCMSP, ETCM and CNKI, and the targets of T2DM were screened by OMIM and GeneCards databases. The “drug-component–target” network was built by Cytoscape 3.6.1 to screen out the core components and the core targets were screened by protein-protein interaction network. GO functional analysis and KEGG pathway enrichment analysis were performed by DAVID database.
Results A total of 144 active components of Ziyabiti tablets were collected in this study, and quercetin, kaempferol, isorhamnetin and so on with higher degree values. There were 823 related targets, of which 700 were related to T2DM, including SRC, MAPK1, MAPK3, etc. GO function analysis suggested that it was related to molecular functions such as signal transduction, protein phosphorylation and protein binding. The main signaling pathways involved in KEGG pathway enrichment analysis were AGE-RAGE signaling pathways in lipid and atherosclerosis, prostate cancer, and diabetic complications.
Conclusion Ziyabiti tablets have the characteristics of multi-component, multi-target, and multi-pathway synergistic intervention in the treatment of T2DM, which is mainly composed of quercetin, kaempferol, isorhamnetin and other components to regulate AGE-RAGE signaling pathways through SRC, MAPK1, MAPK3 targets.
1.中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版) (上)[J]. 中国实用内科杂志, 2021, 41(8): 668-695. DOI: 10.19538/j.nk2021080106.
2.Papatheodorou K, Banach M, Bekiari E, et al. Complications of diabetes 2017[J]. J Diabetes Res, 2018, 2018: 3086167. DOI: 10.1155/2018/3086167.
3.李桂荣, 李桂红, 王烨, 等. 孜亚比提片对血糖和血脂作用的实验研究[J]. 中国新药与临床杂志, 2008, 27(7): 495-499. [Li GR, Li GH, Wang Y, et al. Experimental study of Ziyabiti tablet on blood glucose and blood lipids of ratswith type 2 diabetes mellitus[J]. Chinese Journal of New Drugs and Clinical Remedies, 2008, 27(7): 495-499.]. DOI: 10.3969/j.issn.1007-7669.2008.07.004.
4.周文霞, 王同兴, 程肖蕊, 等. 网络药理学研究中的网络分析技术[J]. 国际药学研究杂志, 2016, 43(3): 399-409. [Zhou WX, Wang TX, Cheng XR, et al. Network analysis technology in network pharmacology research[J]. International Journal of Pharmaceutical Research, 2016, 43(3): 399-409.] DOI: 10.13220/j.cnki.jipr.2016.03.001.
5.葛凌, 蔡亚军, 王章达. 槲皮素对2型糖尿病大鼠胰岛素抵抗的改善作用及FGF21/MAPK信号通路的影响[J]. 中国药师, 2019, 22(3): 418-421. [Ge L, Cai YJ, Wang ZD. Effect of quercetin on insulin resistance and FGF21/MAPK signaling pathway in type 2 diabetic rats[J]. China Pharmacists, 2019, 22(3): 418-421.] DOI: 10.3969/j.issn.1008-049X.2019.03.007
6.Eid H, Haddad P. The antidiabetic potential of quercetin: underlying mechanisms[J]. Curr Med Chem, 2017, 24(4): 355-364. DOI: 10.2174/0929867323666160909153707.
7.李文雯, 钟大鹏, 张卫, 等. 槲皮素对糖尿病大鼠胰岛β细胞损伤的保护作用及机制研究[J]. 广西医科大学学报, 2021, 38(2): 298-303. [Li WW, Zhong DP, Zhang W, et al. The protective role of quercetin on islet in diabetic rats and related mechanism[J]. Guangxi Medical University, 2021, 38(2): 298-303.] DOI: 10.16190/j.cnki. 45-1211/r.2021.02.014.
8.吴巧敏, 卢笑, 倪海祥. 山奈酚防治2型糖尿病研究进展[J]. 浙江中西医结合杂志, 2017, 27(4): 344-349. [Wu QM, Lu X, Ni HX. Research progress of kaempferol in prevention and treatment of type 2 diabetes mellitus[J]. Zhejiang Journal of Integrated Traditional Chinese and Western Medicine, 2017, 27(4): 344-349.] DOI: 10.3969/j.issn.1005-4561.2017.04.034.
9.Luo C, Yang H, Tang C, et al. Kaempferol alleviates insulin resistance via hepatic IKK/NF-κB signal in type 2 diabetic rats[J]. Int Immunopharmacol, 2015, 28(1): 744-750. DOI: 10.1016/j.intimp.2015.07.018.
10.罗成. 山奈酚对胰岛素抵抗的防治作用及其机制研究[D]. 重庆: 重庆医科大学, 2015.
11.王绍欣, 谢云. AGE-RAGE系统与糖尿病周围神经病变[J]. 中国糖尿病杂志, 2008, 16(6): 379-381. [Wang SX, Xie Y. AGE-RAGE system and diabetic peripheral neuropathy[J]. Chinese Journal of Diabetes, 2008, 16(6): 379-381.] DOI:10.3321/j.issn:1006-6187.2008.06.020.
12.徐魏, 罗非君. 芹菜素生物学活性及其机理研究进展[J]. 生命科学, 2019, 31(10): 1077-1087. [Xu W, Luo FJ. Research progress on the biological activity and mechanism of apigenin[J]. Life science, 2019, 31(10): 1077-1087.] DOI: 10.13376/j.cbls/2019133.
13.徐勇, 黄颂敏. MAPK 家族与糖尿病并发症[J]. 国外医学(内分泌学分册), 2001, 21(1): 8-10. [Xu Y, Huang SM. MAPK family and diabetic complications[J]. Foreign Medicine (Endocrinology Booklet), 2001, 21(1): 8-10.] DOI: 10.3760/cma.j.issn.1673-4157.2001.01.004.
14.李芳, 曾欧, 罗健, 等. 硫化氢对糖尿病大鼠心肌纤维化及MAPK1/3和MMP-8表达的影响[J]. 南方医科大学学报, 2015, 35(4): 549-552. [Li F, Zeng O, Luo J, et al. Effects of hydrogen sulfide on myocardial fibrosis and expression of MAPK1/3 and MMP-8 in diabetic rats[J]. Journal of Southern Medical University, 2015, 35(4): 549-552.] DOI: 10.3969/j.issn.1673-4254.2015.04.017.
15.Peng Z, Aggarwal R, Zeng N, et al. AKT1 regulates endoplasmic reticulum stress and mediates the adaptive response of pancreatic cells[J]. Mol Cell Biol, 2020, 40(11): e00031-20. DOI: 10.1128/MCB.00031-20.
16.刘桠, 张翕宇, 晁俊, 等. 参芪复方对2型糖尿病GK大鼠胰岛β细胞功能的影响[J]. 中国实验方剂学杂志, 2020, 26(22): 34-39. [Liu Y, Zhang XY, Chao J, et al. Effect of Shenqi compound on islet β cell function in type 2 diabetic GK rats[J]. Chinese Journal of Experimental Prescriptions, 2020, 26(22): 34-39.] DOI: 10.13422/j.cnki.syfjx.20202237.
17.Ramasamy R, Yan S, schmidt A. Receptor for AGE (RAGE): signaling mechanisms in the pathogenesis of diabetes and its complications[J]. Ann N Y Acad Sci, 2011, 1243(1): 88-102. DOI: 10.1111/j.1749-6632.2011.06320.x.
18.杨超茅, 杨志新, 马晓玲. AGEs-RAGE信号通路在糖尿病肾病中的作用机制及中医药研究进展[J]. 中医学报, 2019, 34(9): 1864-1868. [Yang CM, Yang ZX, Ma XL. The mechanism of AGEs-RAGE signaling pathway in diabetic nephropathy and the research progress of traditional Chinese medicine[J]. Chinese Medical Journal, 2019, 34(9): 1864-1868.] DOI: 10.16368/j.issn.1674- 8999.2019.09.437.
19.马楠, 刘艳姝, 刘文思, 等. HIF-1α、VEGF信号通路在糖尿病肾病中的作用研究进展[J]. 广东化工, 2020, 47(23): 63,70. [Ma N, Liu YS, Liu WS, et al. Research progress on the role of HIF-1α and VEGF signaling pathways in diabetic nephropathy[J]. Guangdong Chemical Industry, 2020, 47(23): 63,70.] DOI: 10.3969/j.issn.1007-1865.2020.23.031.