The drug delivery systems (DDS) based on various nanocarriers are the main directions of research on new formulations and new dosage forms in modern pharmacy. Compared with traditional pharmaceutical preparations, DDS preparations tend to exert drug properties better than conventional preparations and are targeted to the lesion site. As an important part of DDS, the selection and modification of carrier materials is important to development DDS. Zein is an important protein in corn. It is renewable, non-toxic, amphiphilic, biocompatible and biodegradable, and can be self-assembled to form microspheres or nanoparticles. However, pure Zein carrier materials often have defects such as poor stability, easy binding to serum proteins and being intercepted by reticuloendothelial system, therefore, it is necessary to make certain improvements by modification or compounding with other materials. At the same time, the precise construction of Zein-DDS is also the guarantee to obtain the required particle structure and ensure the final performance of the product. At present, built-in ultrasonic dialysis process, supercritical antisolvent method and spray/ antisolvent precipitation method are the main preparation processes for constructing DDS. In this paper, the research progress of Zein's modification and related preparation processes is reviewed, which provides a research basis for the gradual development of Zein- DDS from precursor drugs and sustained-release agents to precision dosage forms such as speed controlled, targeted, and visualized delivery.
1.刘昌孝,王玉丽. 药物制剂产业化发展的前沿科学技术问题探讨[J]. 中国食品药品监管, 2021, 204(1): 6-17. [Liu CX, Wang YL. Exploration of cutting-edge scientific and technological issues in the industrialization development of pharmaceutical preparations[J]. China Food and Drug Administration, 2021, 204(1): 6-17.] DOI: 10.3969/j.issn.1673-5390.2021.01.001.
2.Manzari MT, Shamay Y, Kiguchi H, et al. Targeted drug delivery strategies for precision medicines[J]. Nat Rev Mater, 2021, 6(4): 351-370. DOI: 10.1038/s41578-020-00269-6.
3.Tyler DB, Kathryn AW, Samir M, et al. Materials for oral delivery of proteins and peptides[J]. Nat Rev Mater, 2020, 5(7): 127-148. DOI: 10.1038/s41578-019-0156-6.
4.Lin QZ, Ge SJ, McClements DJ, et al. Advances in preparation, interaction and stimulus responsiveness of protein-based nanodelivery systems[J]. Crit Rev Food Sci Nutr, 2021, 63(19): 4092-4105.DOI: 10.1080/10408398. 2021.1997908.
5.Solanki R, Rostamabadi H, Patel S, et al. Anticancer nano-delivery systems based on bovine serum albumin nanoparticles: a critical review[J]. Int J Biol Macromol, 2021, 193(Part A): 528-540. DOI: 10.1016/j.ijbiomac. 2021.10.040.
6.刘贵金, 汪红娣, 江燕斌. 玉米醇溶蛋白用作药物输送系统载体的研究进展[J]. 化工学报, 2013, 64(10): 3493-3504. [Liu GJ, Wang HD, Jiang YB. Research progress on using zein as a carrier for drug delivery systems[J]. Journal of Chemical Engineering, 2013, 64(10): 3493-3504.] DOI: 10.3969/j.issn.0438-1157. 2013.10.002.
7.Yu X, Wu H, Hu H, et al. Zein nanoparticles as nontoxic delivery system for maytansine in the treatment of non small cell lung cancer[J]. Drug Deliv, 2020, 27(1): 100-109. DOI: 10.1080/10717544.2019.1704942.
8.Wu Z, Li J, Zhang X, et al. Rational fabrication of folate-conjugated zeinsoy lecithincarboxymethyl chitosan core-shell nanoparticles for delivery of docetaxel[J]. ACS Omega, 2022, 7: 13371-13381. DOI: 10.1021/acsomega. 2c01270.
9.Chen S, Han Y, Huang J, et al. Fabrication and characterization of layer-by-layer composite nanoparticles based on zein and hyaluronic acid for codelivery of curcumin and quercetagetin[J]. ACS Appl Mater Interfaces, 2019, 11(18): 16922-16933. DOI: 10.1021/acsami. 9b02529.
10.Liu QG, Jing YQ, Han CP, et al. Encapsulation of curcumin in zein/caseinate/sodium alginate nanoparticleswith improved physicochemical and controlled release properties[J]. Food Hydrocolloids, 2019, 93: 432-442. DOI: 10.1016/j.foodhyd.2019.02.003.
11.Paliwal R, Palakurthi S. Zein in controlled drug delivery and tissue engineering[J]. J Control Release, 2014, 189: 108-122. DOI: 10.1016/j.jconrel.2014.06.036.
12.Patel AR, Bouwens EC, Velikov KP. Sodium caseinate stabilized zein colloidal particles[J]. J Agric Food Chem, 2010, 58(23): 12497-12503. DOI: 10.1021/jf102959b.
13.Yuan Y, Li H, Liu C, et al. Fabrication of stable zein nanoparticles by chondroitin sulfate deposition based on antisolvent precipitation method[J]. Int Biol Macromol, 2019, 139: 30-39. DOI: 10.1016/j.ijbiomac.2019.07.090.
14.Heep G, Almeida A, Marcano R, et al. Zein-casein-lysine multicomposite nanoparticles are effective in modulate the intestinal permeability of ferulic acid[J]. Int J Biol Macromol, 2019, 138: 244-251. DOI: 10.1016/j.ijbiomac.2019.07.030.
15.Karthikeyan K, Lakra R, Rajaram R, et al. Development and characterization of zein-based microcarrier system for sustained delivery of aceclofenac sodium[J]. AAPS PharmSciTech, 2012, 13(1): 143-149. DOI: 10.1208/s12249-011-9731-x.
16.Zhong QX, Jin MF. Zein nanoparticles produced by liquid-liquid dispersion[J]. Food Hydrocolloids, 2009, 23(8): 2380-2387. DOI: 10.1016/j.foodhyd.2009.06.015.
17.Li KK, Zhang X, Huang Q, et al. Continuous preparation of zein colloidal particles by Flash NanoPrecipitation (FNP)[J]. J Food Eng, 2014, 127: 103-110. DOI: 10.1016/j.jfoodeng.2013.12.001.
18.Gomez-Estaca J, Balaguer MP, Gavara R, et al. Formation of zein nanoparticles by electrohydrodynamic atomization: effect of the main processing variables and suitability for encapsulating the food coloring and active ingredient curcumin[J]. Food Hydrocolloids, 2012, 28(1): 82-91. DOI: 10.1016/j.foodhyd.2011.11.013.
19.Dan X, Davidson P, Zhong QX. Release and antilisterial properties of nisin from zein capsules spray-dried at different temperatures[J]. LWT-Food Sci Technol, 2011, 44(10): 1977-1985. DOI: 10.1016/j.lwt.2011.07.017.
20.Zhong QX, Jin MF, Davidson PM, et al. Sustained release of lysozyme from zein microcapsules produced by a supercritical anti-solvent process[J]. Food Chem, 2009, 115(2): 697-700. DOI: 10.1016/j.foodchem.2008.12.063.
21.Liu GJ, Li SM, Huang YX, et al. Incorporation of 10-hydroxycamptothecin nanocrystals into zein microspheres[J]. Chem Eng Sci, 2016, 155: 405-414. DOI: 10.1016/j.ces.2016.08.029.
22.Liu GJ, Wei DW, Wang HD, et al. Self-assembly of zein microspheres with controllable particle size and narrow distribution using a novel built-in ultrasonic dialysis process[J]. Chem Eng J, 2016, 284: 1094-1105. DOI: 10.1016/j.cej.2015.09.067.
23.Pang JF, Li ZX, Li SM, et al. Folate-conjugated zein/Fe3O4 nanocomplexes for the enhancement of cellular uptake and cytotoxicity of gefitinib[J]. Biomaterials, 2018, 53(21): 569-579. DOI: 10.1007/s10853-018-2684-7.
24.Christopher JC, Owen GJ. Stabilizing zein nanoparticle dispersions with ι-carrageenan[J]. Food Hydrocolloids, 2017, 69: 28-35. DOI: 10.1016/j.foodhyd.2017.01.022.
25.Patel AR. Functional and engineered colloids from edible materials for emerging applications in designing the food of the future[J]. Adv Funct Mater, 2020, 30(18): 1806809. DOI: 10.1002/adfm.201806809.
26.Sousa FFO, Luzardo Á, Blanco-Méndez J, et al. Use of 1H NMR STD, WaterLOGSY, and Langmuir monolayer techniques for characterization of drug-zein protein complexes[J]. Eur J Pharm Biopharm, 2013, 85(Part A): 790-798. DOI: 10.1016/j.ejpb.2013.07.008.
27.Shukla R, Cheryan M. Zein: the industrial protein from corn[J]. Ind Crop Prod, 2001, 13(3): 171-192. DOI: 10.1016/S0926-6690(00)00064-9.
28.Matsushima N, Danno G, Takezawa H, et al. Three-dimensional structure of maize α-zein proteins studied by small-angle X-ray scattering[J]. Biochim Biophys Acta, 1997, 1339(1): 14-22. DOI: 10.1016/S0167-4838(96) 00212-9.
29.Zhang W, Sangtong V, Peterson J, et al. Divergent properties of prolamins in wheat and maize[J]. Planta, 2013, 237(6): 1465-1473. DOI: 10.1007/s00425-013-1857-5.
30.Damla D, Jooyeoun J, Zhao YY, et al. Development and characterization of cellulose nanofiber reinforced hydroxypropyl methylcellulose films functionalized with propolis-loaded zein nanoparticles and its application for cheddar cheese storage[J]. Int J Biol Macromol, 2024, 261(P2): 129790. DOI:10.1016/j.ijbiomac.2024.129790.
31.Azizi H, Koocheki A, Ghorani B. Structural elucidation of gluten/zein nanofibers prepared by electrospinning process: focus on the effect of zein on properties of nanofibers[J]. Polym Test, 2023, 128: 108231-108239. DOI: 10.1016/j.polymertesting.2023.108231.
32.Giteru SG, Ali MA, Oey I. Recent progress in understanding fundamental interactions and applications of zein[J]. Food Hydrocolloids, 2021, 120: 106948-106970. DOI: 10.1016/j.foodhyd.2021.106948.
33.Phuong HLT, Wei D, Beom JL, et al. The use of zein in the controlled release of poorly water-soluble drugs[J]. Int J Pharm, 2019, 566: 557-564. DOI: 10.1016/j.ijpharm. 2019.06.018.
34.Zhang X, Li YJ, Wu ZY, et al. Development of carboxymethyl chitosan-coated zein/soy lecithin nanoparticles for the delivery of resveratrol[J]. Food Funct, 2023, 14(3): 1636-1647. DOI: 10.1039/d2fo03180a.
35.Liu GJ, Pang JF, Huang YN, et al. Self-assembled nanospheres of folate-decorated zein for the targeted delivery of 10-hydroxycamptothecin[J]. Ind Eng Chem Res, 2017, 56(30): 8517-8527. DOI: 10.1021/acs.iecr.7b01632.
36.李秀明, 陈野, 王君予. PPC对挤压成型Zein-PPC复合薄膜性质的影响[J]. 食品科学, 2012, 33(19): 6-10. [Li XM, Chen Y, Wang JY. The influence of PPC on the properties of zein PPC composite films formed by extrusion molding[J]. Journal of Food Science, 2012, 33(19): 6-10.] DOI: CNKI:SUN:SPKX.0.2012-19-003.
37.Chen S, McClements DJ, Jian L, et al. Core-shell biopolymer nanoparticles for co-delivery of curcumin and piperine: sequential electrostatic deposition of hyaluronic acid and chitosan shells on the zein core[J]. ACS Appl Mater Interfaces, 2019, 11(41): 38103-38115. DOI: 10.1021/acsami.9b11782.
38.Yuan Y, Li H, Zhu J, et al. Fabrication and characterization of zein nanoparticles by dextran sulfate coating as vehicles for delivery of curcumin[J]. Int J Biol Macromol, 2020, 151: 1074-1083. DOI: 10.1016/j.ijbiomac.2019.10.149.
39.Wang HJ, Huang JC, Hou L, et al. Prolongation of the degradation period and improvement of the angiogenesis of zein porous scaffolds in vivo[J]. J Mater Sci Mater Med, 2016, 27(5): 92. DOI: 10.1007/s10856-016-5697-2.
40.Mo XP, Peng XL, Liang XR, et al. Development of antifungal gelatin-based nanocomposite films functionalized with natamycin-loaded zein/casein nanoparticles[J]. Food Hydrocolloids, 2021, 113: 106506. DOI: 10.1016/j.foodhyd.2020.106506.
41.钟浩,葛德洲,刘浩. 口服液体制剂中16种邻苯二甲酸酯类塑化剂残留量的研究[J]. 中国药师, 2021, 24(11): 556-560. [Zhong H, Ge DZ, Liu H. Reseach on residual levels of 16 phthalate plasticizers in oral liquid formulations[J]. China Pharmacist, 2021, 24(11): 556-560.] DOI: 10.19962/j.cnki.issn1008-049X.2021.11.036.
42.Chuacharoen T, Sabliov CM. Stability and controlled release of lutein loaded in zein nanoparticles with and without lecithin and pluronic F127 surfactants[J]. Colloid Surf A-Physicochem Eng Asp, 2016, 503: 11-18. DOI: 10.1016/j.colsurfa.2016.04.038.
43.Shi YF, Rong S, Guo TX, et al. Fabrication of compact zein-chondroitin sulfate nanocomplex by anti-solvent co-precipitation: prevent degradation and regulate release of curcumin[J]. Food Chem, 2024, 430: 137110-137119. DOI: 10.1016/j.foodchem.2023.137110.
44.Wang TX, Li XX, Chen L, et al. Carriers based on zein-dextran sulfate sodium binary complex for the sustained delivery of quercetin[J]. Front Chem, 2020, 8: 662-674. DOI: 10.3389/fchem.2020.00662.
45.Xiao Y, Ho CT, Chen Y, et al. Synthesis, characterization, and evaluation of genistein-loaded zein/carboxymethyl chitosan nanoparticles with improved water dispersibility, enhanced antioxidant activity, and controlled release property[J]. Foods, 2020, 9(11): 1604-1630. DOI: 10.3390/foods9111604.
46.Wang R, Han J, Jiang A, et al. Involvement of metabolism-permeability in enhancing the oral bioavailability of curcumin in excipient-free solid dispersions co-formed with piperine[J]. Int J Pharm, 2019, 561: 9-18. DOI: 10.1016/j.ijpharm.2019.02.027.
47.Sehgal A, Kumar M, Jain M, et al. Combined effects of curcumin and piperine in ameliorating benzo(a)pyrene induced DNA damage[J]. Food Chem Toxicol, 2011, 49(11): 3002-3006. DOI: 10.1016/j.fct.2011.07.058.
48.Gulseren I, Guri A, Corredig M, et al. Effect of interfacial composition on uptake of curcumin-piperine mixtures in oil in water emulsions by Caco-2 cells[J]. Food Funct, 2014, 5(6): 1218-1223. DOI: 10.1039/c3fo60554j.
49.Huang Y, Zhan Y, Luo G, et al. Curcumin encapsulated zein/caseinate-alginate nanoparticles: release and antioxidant activity under in vitro simulated gastrointestinal digestion[J]. Curr Res Food Sci, 2023, 6: 100463-100474. DOI: 10.1016/j.crfs.2023.100463.
50.Al-Dhabi NA, Arasu MV, Park CH, et al. An up-to-date review of rutin and its biological and pharmacological activities[J]. EXCLI J, 2015, 14: 1459-1463. DOI: 10.17179/excli2014-663.
51.徐宁. 正交试验设计法优化紫萁贯众中紫萁酮和芦丁的闪式提取工艺[J]. 中国药师, 2020, 23(5): 954-957. [Xu N. Optimization of flash extraction process for Ziguantong and rutin in Ziguanzhong by orthogonal experimental design[J]. China Pharmacist, 2020, 23(5): 955-957.] DOI: CNKI:SUN:ZYSG.0.2020-05-041.
52.Tien AN, Liu BG, Zhao J, et al. An investigation into the supramolecular structure, solubility, stability and antioxidant activity of rutin/cyclodextrin inclusion complex[J]. Food Chem, 2013, 136(1): 186-192. DOI: 10.1016/j.foodchem.2012.07.104.
53.Li CC, Chen L, McClements DJ, et al. Preparation and characterization of rutin-loaded zein-carboxymethyl starch nanoparticles[J]. Food, 2022, 11(18): 2827-2844. DOI: 10.3390/FOODS11182827.
54.Geng C, Liu X, Ma J, et al. High strength, controlled release of curcumin-loaded ZIF-8/chitosan/zein film with excellence gas barrier and antibacterial activity for litchi preservation[J]. Carbohydr Polym, 2023, 306: 120612-120625. DOI: 10.1016/j.carbpol.2023.120612.
55.Liu G, Wang W, Wang H, et al. Preparation of 10-hydroxycamptothecin proliposomes by the supercritical CO2 anti-solvent process[J]. Chem Eng J, 2014, 243: 289-296. DOI: 10.1016/j.cej.2014.01.023.
56.Liu GJ, Wu ZY, Zhang JW, et al. Particle design of itraconazole by supercritical anti-solvent technology: processing-microstructure-solubility relationship[J]. Chem Eng Process, 2020, 154: 108013-108022. DOI: 10.1016/j.cep.2020.108013.
57.胡曼, 江燕斌. 超临界溶析技术制备玉米蛋白虾青素负载微粒的研究[J]. 现代食品科学, 2017, 133: 139-145. [Hu M, Jian YB. Research on preparation of corn protein astaxanthin loaded microparticles by supercritical dissolution technology[J]. Modern Food Science, 2017, 133: 139-145.] DOI: 10.13982/j.mfst.1673-9078.2017.3.022.
58.任晓鸣, 王丽娟, 王金梅, 等. 超临界CO2反溶剂法制备大豆异黄酮-玉米醇溶蛋白复合纳米颗粒 [J]. 工艺技术, 2012, 33(24): 273-276. [Ren XN, Wang LJ. Preparation of soybean isoflavone zein composite nanoparticles by supercritical CO2 anti solvent method[J]. Process Technology, 2012, 33(24): 273-276.] DOI: CNKI: SUN:SPKJ.0.2012-24-063.
59.戴建锋, 黄绳武, 方剑文. 抗肿瘤药物自乳化释药系统研究进展[J]. 中国药师, 2008, 11(4): 397-399. [Dai JF, Huang SW, Fang JW. Research progress on self emulsifying drug release systems for anti-tumor drugs[J]. China Pharmacist, 2008, 11(4): 397-399.] DOI: 10.3969/j.issn.1008-049X.2008.04.012.
60.刘丽, 苏明珠, 张锦欣. 中国恶性肿瘤患者经济毒性发生率的Meta分析: 基于患者报告经济毒性综合评分量表[J]. 中国循证医学杂志, 2023, 23(11): 1269-1274. [Liu L, Shu MZ, Zhang JX. Meta analysis of the incidence of economic toxicity in Chinese malignant tumor patients: based on the patient reported economic toxicity comprehensive scoring scale[J]. Chinese Journal of Evidence-Based Medicine, 2023, 23(11): 1269-1274.] DOI: 10.7507/1672-2531.202306083.
61.许晓宇, 李兴昶, 吕诗剑. 前列腺癌诊疗中前列腺特异膜抗原分子靶向探针的应用[J]. 华西医学, 2020, 35(1): 98-102. [Xu XY, Li XC, Lyv SJ. Application of prostate specific membrane antigen molecular targeting probes in the diagnosis and treatment of prostate cancer[J]. West China Medical Journal, 2020, 35(1): 98-102.] DOI: 10.7507/1002-0179.201911075.
62.Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect[J]. Adv Drug Deliv Rev, 2011, 63(3): 131-135. DOI: 10.1016/j.addr.2010.03.011.
63.Kobayashi H, Watanabe R, Choyke PL. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target[J]. Theranostics, 2014, 4(1): 81-89. DOI: 10.7150/thno.7193.
64.Yu DG, Wang X, Liao YZ, et al. Helicid-loaded zein microparticles prepared using electrohydrodynamic atomization[J]. Applied Mechanics and Materials, 2012, 164: 487-491. DOI: 10.4028/www.scientific.net/AMM.164.487.
65.Hou H, Zhang D, Lin J, et al. Zein-paclitaxel prodrug nanoparticles for redox-triggered drug delivery and enhanced therapeutic efficiency[J]. J Agric Food Chem, 2018, 66(44): 11812-11822. DOI: 10.1021/acs.jafc.8b04627.