Objective To establish a method for determining the encapsulation rate of ruxolitinib solid lipid nanoparticles (Ru-SLN).
Methods Ru-SLN was prepared using the melt emulsification-ultrasonic method, and the free drug and Ru-SLN were separated using ultrafiltration centrifugation. The Ru content was determined using HPLC, and the encapsulation rate was calculated accordingly.
Results Ru had a good linear relationship within the concentration range of 4.08-408.00 μg/mL (r=0.999 7), and its average recovery rate was 101.60%, with the RSD of 1.09% (n=9). The ultrafiltration centrifugation selected ultrafiltration centrifuge tubes with a cut-off molecular weight of 10 kDa, centrifuged at 10 961 × g for 10 minutes, and showed no significant membrane adsorption. The encapsulation rate of Ru-SLN was determined to be (97.01±1.23)%.
Conclusion The combination of ultrafiltration centrifugation and HPLC method for determining the encapsulation efficiency of Ru-SLN is fast, convenient, and highly accurate, providing effective experimental guidance for the determination of Ru formulation content and encapsulation efficiency.
1. Liu J, Wang F, Luo F. The role of JAK/STAT pathway in fibrotic diseases: molecular and cellular mechanisms[J]. Biomolecules, 2023, 13(1): 119. DOI: 10.3390/biom13010119.
2. Cao Y, Wang J, Jiang S, et al. JAK1/2 inhibitor ruxolitinib promotes the expansion and suppressive action of polymorphonuclear myeloid-derived suppressor cells via the JAK/STAT and ROS-MAPK/NF-κB signalling pathways in acute graft-versus-host disease[J]. Clin Transl Immunol, 2023, 12(2): e1441. DOI: 10.1002/cti2.1441.
3. Arcaini L, Cazzola M. Benefits and risks of JAK inhibition[J]. Blood, 2018, 132(7): 675-676. DOI: 10.1182/blood-2018-07-858720.
4. Chifotides HT, Masarova L, Verstovsek S. SOHO state of the art updates and next questions: novel therapeutic strategies in development for myelofibrosis[J]. Clin Lymphoma Myeloma Leuk, 2023, 23(4): 219-231. DOI: 10.1016/j.clml.2022.12.014.
5. Sheikh A, Rafique W, Owais R, et al. FDA approves ruxolitinib (opzelura) for vitiligo therapy: a breakthrough in the field of dermatology[J]. Ann Med Surg (Lond), 2022, 81: 104499. DOI: 10.1016/j.amsu.2022.104499.
6. Rosmarin D, Pandya AG, Lebwohl M, et al. Ruxolitinib cream for treatment of vitiligo: a randomised, controlled, phase 2 trial[J]. Lancet, 2020, 396(10244): 110-120. DOI: 10.1016/S0140-6736(20)30609-7.
7. Owji S, Caldas SA, Ungar B. Management of atopic dermatitis: clinical utility of ruxolitinib[J]. J Asthma Allergy, 2022, 15: 1527-1537. DOI: 10.2147/JAA.S342051.
8. Zheng C, Tosti A. Alopecia areata: new treatment options including janus kinase inhibitors[J]. Dermatol Clin, 2021, 39(3): 407-415. DOI: 10.1016/j.det.2021.03.005.
9. Kaewbanjong J, Amnuaikit T, Souto EB, et al. Antidermatophytic activity and skin retention of clotrimazole microemulsion and microemulsion-based gel in comparison to conventional cream[J]. Skin Pharmacol Phys, 2018, 31(6): 292-297. DOI: 10.1159/000491756.
10. Rosita N, Sultani AA, Hariyadi DM. Penetration study of p-methoxycinnamic acid (PMCA) in nanostructured lipid carrier, solid lipid nanoparticles, and simple cream into the rat skin[J]. Sci Rep, 2022, 12(1): 19365. DOI: 10.1038/s41598-022-23514-0.
11. Paliwal R, Paliwal SR, Kenwat R, et al. Solid lipid nanoparticles: a review on recent perspectives and patents[J]. Expert Opin Ther Pat, 2020, 30(3): 179-194. DOI: 10.1080/13543776.2020.1720649.
12. Sulaiman KN, Sharma S, Sharma PK, et al. Several applications of solid lipid nanoparticles in drug delivery[J/ OL]. Curr Mol Med, 2023-07-20. DOI: 10.2174/1566524023666230720110351.
13. 国家药品监督管理局药品审评中心. 《纳米药物质量控制研究技术指导原则(试行)》的通告(2021年第35号) [EB/OL]. (2021-08-27) [2024-08-14]. https://www.cde.org.cn/main/news/viewInfoCommon/95945bb17a7dcde7b68638525ed38f66.
14. 张艺, 杭太俊, 宋敏. 载药脂质体包封率测定方法的研究进展[J]. 中国药科大学学报, 2021, 52(2): 245-252. [Zhang Y, Hang TJ, Song M. Progress in research on the determination of entrapment efficiency of liposomes[J]. Journal of China Pharmaceutical University, 2021, 52(2): 245-252.] DOI: 10.11665/j.issn.1000-5048.20210214.
15. López-Cabeza R, Kah M, Grillo R, et al. Is centrifugal ultrafiltration a robust method for determining encapsulation efficiency of pesticide nanoformulations?[J]. Nanoscale, 2021, 13(10): 5410-5418. DOI: 10.1039/d0nr08693b.
16. Wang J, Wang H, Xu H, et al. Solid lipid nanoparticles as an effective sodium aescinate delivery system: formulation and anti-inflammatory activity[J]. RSC Adv, 2022, 12(11): 6583-6591. DOI: 10.1039/d1ra07638h.
17. 周恺, 姚亮, 戴浩志, 等. 超滤离心法测定银杏内酯B纳米结构脂质载体包封率[J]. 安徽中医药大学学报, 2015, 34(2): 78-81. [Zhou K, Yao L, Dai HZ, et al. Centrifugal ultrafiltration technique for determining entrapment efficiency of ginkgolide B-loaded nanostructured lipid carriers[J]. Journal of Anhui University of Chinese Medicine, 2015, 34(2): 78-81.] DOI: 10.3969/j.issn.2095-7246.2015.02.023.
18. Lee B, Moon H, Chae J, et al. Clinical efficacy of ruxolitinib in patients with myelofibrosis: a nationwide population-based study in korea[J]. J Clin Med, 2021, 10(20): 4774. DOI: 10.3390/jcm10204774.
19. Coltoff A, Mesa R, Gotlib J, et al. Real-world outcomes of ruxolitinib treatment for polycythemia vera[J]. Clin Lymphoma Myeloma Leuk, 2020, 20(10): 697-703. e1. DOI: 10.1016/j.clml.2020.05.019.
20. Xu C, Lei Z, Wang L, et al. The effect of transplantation of cultured autologous melanocytes on CXCL9, CXCL10 and CXCL11 expressions in vitiligo[J]. Indian J Dermatol, 2023, 68(4): 486. DOI: 10.4103/ijd.ijd_925_22.
21. Liang J, Yu Y, Li C, et al. Tofacitinib combined with melanocyte protector α-MSH to treat vitiligo through dextran based hydrogel microneedles[J]. Carbohydr Polym, 2023, 305: 120549. DOI: 10.1016/j.carbpol.2023.120549.
22. King B, Ko J, Forman S, et al. Efficacy and safety of the oral Janus kinase inhibitor baricitinib in the treatment of adults with alopecia areata: Phase 2 results from a randomized controlled study[J]. J Am Acad Dermatol, 2021, 85(4): 847-853. DOI: 10.1016/j.jaad.2021.05.050.