Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 28,2024 No.4 Detail

Determination of encapsulation rate of ruxolitinib solid lipid nanoparticles by ultrafiltration centrifugation-HPLC method

Published on Jan. 04, 2025Total Views: 557 times Total Downloads: 70 times Download Mobile

Author: FENG Shiquan 1 YU Jiaqi 2 DONG Deqiao 1 GAN Changran 1 PENG Haoyang 1 DUAN Chengcheng 1 QIN Zhenmiao 1 GAO Yanan 1

Affiliation: 1. School of Pharmacy, Hainan Medical University, Haikou 571199, China 2. School of International Education, Hainan Medical University, Haikou 571199, China

Keywords: Ruxolutinib Solid lipid nanoparticles Melt-emulsification ultrasonic method High performance liquid chromatography Ultrafiltration centrifugation Encapsulation rate Methodology

DOI: 10.12173/j.issn.2097-4922.202406146

Reference: FENG Shiquan, YU Jiaqi, DONG Deqiao, GAN Changran, PENG Haoyang, DUAN  Chengcheng, QIN Zhenmiao, GAO Yanan.Determination of encapsulation rate of ruxolitinib solid lipid nanoparticles by ultrafiltration centrifugation-HPLC method[J].Yaoxue QianYan Zazhi,2024, 28(4):585-592.DOI: 10.12173/j.issn.2097-4922.202406146.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Objective  To establish a method for determining the encapsulation rate of ruxolitinib solid lipid nanoparticles (Ru-SLN).

Methods Ru-SLN was prepared using the melt emulsification-ultrasonic method, and the free drug and Ru-SLN were separated using ultrafiltration centrifugation. The Ru content was determined using HPLC, and the encapsulation rate was calculated accordingly.

Results Ru had a good linear relationship within the concentration range of 4.08-408.00 μg/mL (r=0.999 7), and its average recovery rate was 101.60%, with the RSD of 1.09% (n=9). The ultrafiltration centrifugation selected ultrafiltration centrifuge tubes with a cut-off molecular weight of 10 kDa, centrifuged at 10 961 × g for 10 minutes, and showed no significant membrane adsorption. The encapsulation rate of Ru-SLN was determined to be (97.01±1.23)%.

Conclusion The combination of ultrafiltration centrifugation and HPLC method for determining the encapsulation efficiency of Ru-SLN is fast, convenient, and highly accurate, providing effective experimental guidance for the determination of Ru formulation content and encapsulation efficiency.

Full-text
Please download the PDF version to read the full text: download
References

1. Liu J, Wang F, Luo F. The role of JAK/STAT pathway in fibrotic diseases: molecular and cellular mechanisms[J]. Biomolecules, 2023, 13(1): 119. DOI: 10.3390/biom13010119.

2. Cao Y, Wang J, Jiang S, et al. JAK1/2 inhibitor ruxolitinib promotes the expansion and suppressive action of polymorphonuclear myeloid-derived suppressor cells via the JAK/STAT and ROS-MAPK/NF-κB signalling pathways in acute graft-versus-host disease[J]. Clin Transl Immunol, 2023, 12(2): e1441. DOI: 10.1002/cti2.1441.

3. Arcaini L, Cazzola M. Benefits and risks of JAK inhibition[J]. Blood, 2018, 132(7): 675-676. DOI: 10.1182/blood-2018-07-858720.

4. Chifotides HT, Masarova L, Verstovsek S. SOHO state of the art updates and next questions: novel therapeutic strategies in development for myelofibrosis[J]. Clin Lymphoma Myeloma Leuk, 2023, 23(4): 219-231. DOI: 10.1016/j.clml.2022.12.014.

5. Sheikh A, Rafique W, Owais R, et al. FDA approves ruxolitinib (opzelura) for vitiligo therapy: a breakthrough in the field of dermatology[J]. Ann Med Surg (Lond), 2022, 81: 104499. DOI: 10.1016/j.amsu.2022.104499.

6. Rosmarin D, Pandya AG, Lebwohl M, et al. Ruxolitinib cream for treatment of vitiligo: a randomised, controlled, phase 2 trial[J]. Lancet, 2020, 396(10244): 110-120. DOI: 10.1016/S0140-6736(20)30609-7.

7. Owji S, Caldas SA, Ungar B. Management of atopic dermatitis: clinical utility of ruxolitinib[J]. J Asthma Allergy, 2022, 15: 1527-1537. DOI: 10.2147/JAA.S342051.

8. Zheng C, Tosti A. Alopecia areata: new treatment options including janus kinase inhibitors[J]. Dermatol Clin, 2021, 39(3): 407-415. DOI: 10.1016/j.det.2021.03.005.

9. Kaewbanjong J, Amnuaikit T, Souto EB, et al. Antidermatophytic activity and skin retention of clotrimazole microemulsion and microemulsion-based gel in comparison to conventional cream[J]. Skin Pharmacol Phys, 2018, 31(6): 292-297. DOI: 10.1159/000491756.

10. Rosita N, Sultani AA, Hariyadi DM. Penetration study of p-methoxycinnamic acid (PMCA) in nanostructured lipid carrier, solid lipid nanoparticles, and simple cream into the rat skin[J]. Sci Rep, 2022, 12(1): 19365. DOI: 10.1038/s41598-022-23514-0.

11. Paliwal R, Paliwal SR, Kenwat R, et al. Solid lipid nanoparticles: a review on recent perspectives and patents[J]. Expert Opin Ther Pat, 2020, 30(3): 179-194. DOI: 10.1080/13543776.2020.1720649.

12. Sulaiman KN, Sharma S, Sharma PK, et al. Several applications of solid lipid nanoparticles in drug delivery[J/ OL]. Curr Mol Med, 2023-07-20. DOI: 10.2174/1566524023666230720110351.

13. 国家药品监督管理局药品审评中心. 《纳米药物质量控制研究技术指导原则(试行)》的通告(2021年第35号) [EB/OL]. (2021-08-27) [2024-08-14]. https://www.cde.org.cn/main/news/viewInfoCommon/95945bb17a7dcde7b68638525ed38f66.

14. 张艺, 杭太俊, 宋敏. 载药脂质体包封率测定方法的研究进展[J]. 中国药科大学学报, 2021, 52(2): 245-252. [Zhang Y, Hang TJ, Song M. Progress in research on the determination of entrapment efficiency of liposomes[J]. Journal of China Pharmaceutical University, 2021, 52(2): 245-252.] DOI: 10.11665/j.issn.1000-5048.20210214.

15. López-Cabeza R, Kah M, Grillo R, et al. Is centrifugal ultrafiltration a robust method for determining encapsulation efficiency of pesticide nanoformulations?[J]. Nanoscale, 2021, 13(10): 5410-5418. DOI: 10.1039/d0nr08693b.

16. Wang J, Wang H, Xu H, et al. Solid lipid nanoparticles as an effective sodium aescinate delivery system: formulation and anti-inflammatory activity[J]. RSC Adv, 2022, 12(11): 6583-6591. DOI: 10.1039/d1ra07638h.

17. 周恺, 姚亮, 戴浩志, 等. 超滤离心法测定银杏内酯B纳米结构脂质载体包封率[J]. 安徽中医药大学学报, 2015, 34(2): 78-81. [Zhou K, Yao L, Dai HZ, et al. Centrifugal ultrafiltration technique for determining entrapment efficiency of ginkgolide B-loaded nanostructured lipid carriers[J]. Journal of Anhui University of Chinese Medicine, 2015, 34(2): 78-81.] DOI: 10.3969/j.issn.2095-7246.2015.02.023.

18. Lee B, Moon H, Chae J, et al. Clinical efficacy of ruxolitinib in patients with myelofibrosis: a nationwide population-based study in korea[J]. J Clin Med, 2021, 10(20): 4774. DOI: 10.3390/jcm10204774.

19. Coltoff A, Mesa R, Gotlib J, et al. Real-world outcomes of ruxolitinib treatment for polycythemia vera[J]. Clin Lymphoma Myeloma Leuk, 2020, 20(10): 697-703. e1. DOI: 10.1016/j.clml.2020.05.019.

20. Xu C, Lei Z, Wang L, et al. The effect of transplantation of cultured autologous melanocytes on CXCL9, CXCL10 and CXCL11 expressions in vitiligo[J]. Indian J Dermatol, 2023, 68(4): 486. DOI: 10.4103/ijd.ijd_925_22.

21. Liang J, Yu Y, Li C, et al. Tofacitinib combined with melanocyte protector α-MSH to treat vitiligo through dextran based hydrogel microneedles[J]. Carbohydr Polym, 2023, 305: 120549. DOI: 10.1016/j.carbpol.2023.120549.

22. King B, Ko J, Forman S, et al. Efficacy and safety of the oral Janus kinase inhibitor baricitinib in the treatment of adults with alopecia areata: Phase 2 results from a randomized controlled study[J]. J Am Acad Dermatol, 2021, 85(4): 847-853. DOI: 10.1016/j.jaad.2021.05.050.

Popular papers
Last 6 months