Objective To elucidate the antibacterial active ingredients and mechanism of traditional Chinese preparation Xiaoyan Kangjun tablets based on network pharmacology.
Methods The TCMSP database and SwissTargetPrediction database were used to collect and screen the active components of Xiaoyan Kangjun tablets and to mine the corresponding targets. GeneCards database and OMIM database were used to screen antibacterial targets, and the antibacterial targets of Xiaoyan Kangjun tablets were obtained by the intersection using Venny 2.1. Then, the “drug-active ingredient-antibacterial target” network diagram was constructed using Cytoscape 3.8.0 software. The antibacterial targets of Xiaoyan Kangjun tablets were imported into the STRING platform to construct the PPI network. The network topology analysis of Cytoscape software was used to calculate and screen the key antibacterial targets. GO functional enrichment analysis and KEGG pathway enrichment analysis were performed for antibacterial targets using Metascape database. GSE19315 chip was downloaded from GEO database for differential gene analysis. Finally, the active ingredients were verified by molecular docking with the core targets using AutoDock Tools.
Results 52 kinds of potential active ingredients of Xiaoyan Kangjun tablets and 485 corresponding potential gene targets were retrieved. Meanwhile, there were 2 296 potential antibacterial targets, and 138 antibacterial targets of Xiaoyan Kangjun tablets were obtained through the intersection by Venny 2.1. The key targets were AKT1, TP53, TNF, IL-6, GAPDH, VEGFA, IL-1β, MYC, SRC, MMP9, EGFR, PTGS2, ESR1, IL-10, HIF1A, CCL2, HSP90AA1, PPARG and CCND1. The potential gene targets of active ingredients were intersected with the differential genes obtained from GEO database, and the possible anti-inflammatory targets of Xiaoyan Kangjun tablets were obtained for the treatment of dysentery and hemorrhagic colitis. The results of molecular docking showed that the potential active ingredients had good binding potential with the core targets. Xiaoyan Kangjun tablets might participate in the regulation of pathways in cancer, lipid and atherosclerosis, chemical carcinogenesis-reactive oxygen species, endocrine resistance, NF-κB signaling pathway, platinum drug resistance, relaxin signaling pathway, inflammatory bowel disease, prolactin signaling pathway, viral carcinogenesis and other signaling pathways to play an antibacterial role.
Conclusion This study elucidates the antibacterial action mechanism of Xiaoyan Kangjun tablets with multiple components, multiple targets and multiple pathways, and provides the theoretical reference for further exploration of the antibacterial mechanism of the traditional Chinese preparation Xiaoyan Kangjun tablets, and shows new ideas and clues for the development of its efficacy.
1.刘环香, 周本宏, 张洪, 等. 消炎抗菌片的制备及质量控制[J]. 时珍国药研究, 1993, 4(2): 32-33. [Liu HX, Zhou BH, Zhang H, et al. Preparation and quality control of Xiaoyankangjun tablets[J]. Lishizhen Medicine and Materia Medica Research, 1993, 4(2): 32-33.] https://www.cnki.com.cn/Article/CJFDTotal-SZGY199302022.htm.
2.周本宏, 李妍, 周梦宇, 等. 消炎抗菌片的抗菌活性及对福氏志贺氏菌的抗菌机制初步探讨[J]. 中国医院药学杂志, 2018, 38(23): 2429-2433. [Zhou BH, Li Y, Zhou MY, et al. Antibacterial activity of Xiaoyankangjun tablets and preliminary discussion of antibacterial mechanism against Shigella flexneri[J]. Chinese Journal of Hospital Pharmacy, 2018, 38(23): 2429-2433.] DOI: 10.13286/j.cnki.chinhosppharmacyj.2018.23.10.
3.崔煦然, 赵京霞, 郭玉红, 等. 细菌耐药背景下中药抗菌作用研究进展[J]. 世界中医药, 2016, 11(10): 1940-1944. [Cui XR, Zhao JX, Guo YH, et al. Advances of researches on antibiosis function of traditional Chinese medicine with background of bacterial resistance[J]. World Chinese Medicine, 2016, 11(10): 1940-1944.] DOI: 10.3969/j.issn.1673-7202.2016.10.002.
4.朴喜航, 艾红佳. 中药抗菌成分及其抗菌机制的研究进展 [J]. 吉林医药学院学报, 2017, 38(6): 445-447. [Pu XH, Ai HJ. Research progress of antibacterial components and antibacterial mechanisms of traditional Chinese medicine[J]. Journal of Jilin Medical University, 2017, 38(6): 445-447.] DOI: 10.13845/j.cnki.issn1673-2995.2017.06.018.
5.林真亭, 隋华秀, 王皇斌. 中药抗菌活性的研究进展[J]. 海峡药学, 2019, 31(10): 57-60. [Lin ZT, Sui HX, Wang HB, et al. Research progress on antibacterial activity of traditional Chinese medicine[J]. Strait Pharmaceutical Journal, 2019, 31(10): 57-60.] DOI: 10.3969/j.issn.1006-3765.2019.10.018.
6.周本宏, 章柏钰, 李妍, 等. 院内制剂消炎抗菌片的UPLC-LTQ-Orbitrap HRMS分析[J]. 中国医院药学杂志, 2020, 40(8): 902-908. [Zhou BH, Zhang BY, Li Y, et al. Analysis of Xiaoyankangjun tablets by UPLC-LTQ-Orbitrap HRMS[J]. Chinese Journal of Hospital Pharmacy, 2020, 40(8): 902-908.] DOI: 10.13286/j.1001-5213.2020.08.13.
7.Noor F, Tahir ul Qamar M, Ashfaq UA, et al. Network pharmacology approach for medicinal plants: review and assessment[J]. Pharmaceuticals (Basel), 2022, 15(5): 572. DOI: 10.3390/ph15050572.
8.Zhang R, Zhu X, Bai H, et al. Network pharmacology databases for traditional Chinese medicine: review and assessment[J]. Front Pharmacol, 2019, 10: 123. DOI: 10.3389/fphar.2019.00123.
9.Baggio G, Bassett DS, Pasqualetti F. Data-driven control of complex networks[J]. Nat Commun, 2021, 12(1): 1429. DOI: 10.1038/s41467-021-21554-0.
10.任薇, 徐明明, 高欣, 等. 基于网络药理学、分子对接和实验验证探讨感冒清热片抗肺损伤的作用机制[J]. 中药新药与临床药理, 2024, 35(9): 1376-1388. [Ren W, Xu MM, Gao X, et al. Exploration on the mechanism of Ganmao Qingre pills against lung injury based on network pharmacology, molecular docking and experimental verification[J]. Traditional Chinese Drug Research and Clinical Pharmacology, 2024, 35(9): 1376-1388.] DOI: 10.19378/j.issn.1003-9783.2024.09.011.
11.Annibaldi A, Meier P. Checkpoints in TNF-induced cell death: implications in inflammation and cancer[J]. Trends Mol Med, 2018, 24(1): 49-65. DOI: 10.1016/j.molmed.2017.11.002.
12.Krause K, Sabat R, Witte-Händel E, et al. Association of CCL2 with systemic inflammation in Schnitzler syndrome[J]. Br J Dermatol, 2019, 180(4): 859-868. DOI: 10.1111/bjd.17334.
13.Chamberlain TC, Cheung ST, Yoon JSJ, et al. Interleukin-10 and small molecule SHIP1 allosteric regulators trigger anti-inflammatory effects through SHIP1/STAT3 complexes[J]. iScience, 2020, 23(8): 101433. DOI: 10.1101/2020.05.29.123943.
14.Hu W, Chen S, Thorne RF, et al. TP53, TP53 target genes (DRAM, TIGAR), and autophagy[J]. Adv Exp Med Biol, 2019, 1206: 127-149. DOI: 10.1007/978-981-15-0602-4_6.
15.Shaik-Dasthagirisaheb YB, Varvara G, Murmura G, et al. Vascular endothelial growth factor (VEGF), mast cells and inflammation[J]. Int J Immunopathol Pharmacol, 2013, 26(2): 327-335. DOI: 10.1177/039463201302600206.
16.Dela Paz NG, Melchior B, Frangos JA. Early VEGFR2 activation in response to flow is VEGF-dependent and mediated by MMP activity[J]. Biochem Biophys Res Commun, 2013, 434(3): 641-646. DOI: 10.1016/j.bbrc.2013.03.134.
17.王琴, 刘力, 乐意, 等. Src激酶抑制剂研究进展[J]. 中国药物化学杂志, 2021, 31(4): 312-319. [Wang Q, Liu L, Yue Y, et al. The progress of Src inhibitors[J]. Chinese Journal of Medicinal Chemistry, 2021, 31(4): 312-319.] DOI: 10.14142/j.cnki.cn21-1313/r.2021.04.008.
18.Fang Q, Zou C, Zhong P, et al. EGFR mediates hyperlipidemia-induced renal injury via regulating inflammation and oxidative stress: the detrimental role and mechanism of EGFR activation[J]. Oncotarget. 2016, 7(17): 24361-24373. DOI: 10.18632/oncotarget.8222.
19.Binato R, Corrêa S, Panis C, et al. NRIP1 is activated by C-JUN/C-FOS and activates the expression of PGR, ESR1 and CCND1 in luminal A breast cancer[J]. Sci Rep, 2021, 11(1): 21159. DOI: 10.1038/s41598-021-00291-w.
20.Zhang H, Huang J, Fan X, et al. HSP90AA1 promotes the inflammation in human gingival fibroblasts induced by Porphyromonas gingivalis lipopolysaccharide via regulating of autophagy[J]. BMC Oral Health, 2022, 22(1): 366. DOI: 10.1186/s12903-022-02304-0.
21.Maruggi M, Layng FI, Lemos R Jr, et al. Absence of HIF1A leads to glycogen accumulation and an inflammatory response that enables pancreatic tumor growth[J]. Cancer Res, 2019, 79(22): 5839-5848. DOI: 10.1158/0008-5472.CAN-18-2994.
22.Steffen B, Paal SA, Johan B, et al. Polymorphisms in the inflammatory pathway genes TLR2, TLR4, TLR9, LY96, NFKBIA, NFKB1, TNFA, TNFRSF1A, IL6R, IL10, IL23R, PTPN22, and PPARG are associated with susceptibility of inflammatory bowel disease in a danish cohort[J]. PLoS One, 2014, 9(6): e98815. DOI: 10.1371/journal.pone.0098815.
23.Liu D, Zhong Z, Karin M. NF-κB: a double-edged sword controlling inflammation[J]. Biomedicines, 2022, 10(6): 1250. DOI: 10.3390/biomedicines10061250.
24.Arababadi PAG. APLN/APJ pathway: the key regulator of macrophage functions[J]. Life Sci, 2019, 232: 116645. DOI: 10.1016/j.lfs.2019.116645.
25.Marchi S, Guilbaud E, Tait SWG, et al. Mitochondrial control of inflammation[J]. Nat Rev Immunol, 2023, 23(3): 159-173. DOI: 10.1038/s41577-022-00760-x.
26.Yao RQ, Ren C, Xia ZF, et al. Organelle-specific autophagy in inflammatory diseases: a potential therapeutic target underlying the quality control of multiple organelles[J]. Autophagy, 2021, 17(2): 385-401. DOI: 10.1080/15548627.2020.1725377.
27.Leyva-Illades D, Cherla RP, Galindo CL, et al. Global transcriptional response of macrophage-like THP-1 cells to shiga toxin type 1[J]. Infect Immun, 2010, 78(6): 2454-2465. DOI: 10.1128/IAI.01341-09.
28.Brooks D, Barr LC, Wiscombe S, et al. Human lipopolysaccharide models provide mechanistic and therapeutic insights into systemic and pulmonary inflammation[J]. Eur Respir J, 2020, 56(1): 1901298. DOI: 10.1183/13993003.01298-2019.
29.Russo RC, Garcia CC, Teixeira MM, et al. The CXCL8/IL-8 chemokine family and its receptors in inflammatory diseases[J]. Exp Rev Clin Immunol, 2014, 10(5): 593-619. DOI: 10.1586/1744666X.2014.894886.
30.Sancho M, Leiva D, Lucendo E, et al. Understanding MCL1: from cellular function and regulation to pharmacological inhibition[J]. FEBS J, 2022, 289(20): 6209-6234. DOI: 10.1111/febs.16136.
31.Shetty A, Tripathi SK, Junttila S, et al. A systematic comparison of FOSL1, FOSL2 and BATF-mediated transcriptional regulation during early human Th17 differentiation[J]. Nucleic Acids Res, 2022, 50(9): 4938-4958. DOI: 10.1093/nar/gkac256.
32.Mo S, Guo J, Ye T, et al. Mycobacterium tuberculosis utilizes host histamine receptor H1 to modulate reactive oxygen species production and phagosome maturation via the p38MAPK-NOX2 axis[J]. mBio, 2022, 13(5): e0200422. DOI: 10.1128/mbio.02004-22.
33.Hellmann J, Tang Y, Zhang MJ, et al. Atf3 negatively regulates Ptgs2/Cox2 expression during acute inflammation[J]. Prostaglandins Other Lipid Mediat, 2015, 116(117): 49-56. DOI: 10.1016/j.prostaglandins.2015.01.001.
34.宋雪娇, 刘晓琳, 金安妍, 等. 木犀草素抗菌及消除耐药作用的研究进展[J]. 中国家禽, 2015, 37(17): 44-46. [Song XJ, Liu XL, Jin AY, et al. Research progress on antibacterial action and eliminating drug resistance of luteolin[J]. China Poultry, 2015, 37(17): 44-46.] DOI: 10.16372/j.issn.1004-6364.2015.17.010.
35.于倩, 巫冠中. 木犀草素抗炎机制的研究进展[J]. 药学研究, 2019, 38(2): 108-111, 119. [Yu Q, Wu GZ. Research progress of anti-inflammatory properties of luteolin[J]. Journal of Pharmaceutical Research, 2019, 38(2): 108-111, 119.] DOI: 10.13506/j.cnki.jpr.2019.02.012.
36.Nguyen TLA, Bhattacharya D. Antimicrobial activity of quercetin: an approach to its mechanistic principle[J]. Molecules, 2022, 27(8): 2494. DOI: 10.3390/molecules27082494.
37.Wang W, Xia T, Yu X. Wogonin suppresses inflammatory response and maintains intestinal barrier function via TLR4-MyD88-TAK1-mediated NF-κB pathway in vitro[J]. Inflamm Res, 2015, 64: 423-431. DOI: 10.1007/s00011-015-0822-0.
38.Guo QH, Liu GY, Liu XB, et al. Baicalein exerts a protective role in pneumonia caused by Streptococcus pneumoniae[J]. Front Biosci, 2019, 24(5): 849-858. DOI: 10.2741/4755.
39.Periferakis A, Periferakis K, Badarau IA, et al. Kaempferol: antimicrobial properties, sources, clinical, and traditional applications[J]. Int J Mol Sci, 2022, 23(23): 15054. DOI: 10.3390/IJMS232315054.
40.陈元堃, 曾奥, 罗振辉, 等. β-谷甾醇药理作用研究进展 [J]. 广东药科大学学报, 2021, 37(1): 148-153. [Chen YK, Zeng A, Luo ZH, et al. Advances on pharmacology of β-sitosterol[J]. Journal of Guangdong Pharmaceutical, 2021, 37(1): 148-153.] DOI: 10.16809/j.cnki.2096-3653.2020040801.
41.Du L, Li J, Zhang X, et al. Pomegranate peel polyphenols inhibits inflammation in LPS-induced RAW264. 7 macrophages via the suppression of TLR4/NF-κB pathway activation[J]. Food Nutr Res, 2019, 63: 3392. DOI: 10.29219/fnr.v63.3392.
42.Guo Q, Jin YZ, Chen XY, et al. NF-κB in biology and targeted therapy: new insights and translational implications[J]. Signal Transduct Target Ther, 2024, 9(1): 53. DOI: 10.1038/s41392-024-01757-9.
43.Nandi I, Aroeti B. Mitogen-activated protein kinases (MAPKs) and enteric bacterial pathogens: a complex interplay[J]. Int J Mol Sci, 2023, 24(15): 11905. DOI: 10.3390/ijms241511905.
44.Nell S, Suerbaum S, Josenhans C. The impact of the microbiota on the pathogenesis of IBD: lessons from mouse infection models[J]. Nat Rev Microbiol, 2010, 8(8): 564-577. DOI: 10.1038/nrmicro2403.
45.Vavricka SR, Galván JA, Dawson H, et al. Expression patterns of TNFα, MAdCAM1, and STAT3 in intestinal and skin manifestations of inflammatory bowel disease[J]. J Crohns Colitis, 2018, 12(3): 347-354. DOI: 10.1093/ecco-jcc/jjx158.
46.Xu Q, Yin S, Yao Y, et al. MAST3 modulates the inflammatory response and proliferation of fibroblast-like synoviocytes in rheumatoid arthritis[J]. Int mmunopharmacol, 2019, 77: 105900. DOI: 10.1016/j.intimp.2019.105900.
47.Liu X, Tang R, Xu J, et al. CRIP1 fosters MDSC trafficking and resets tumour microenvironment via facilitating NF-κB/p65 nuclear translocation in pancreatic ductal adenocarcinoma[J]. Gut, 2023, 72(12): 2329-2343. DOI: 10.1136/gutjnl-2022-329349.
48.Gilchrist M, Thorsson V, Li B, et al. Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4[J]. Nature, 2006, 441(7090): 173-178. DOI: 10.1038/nature04768.
49.Zusso M, Lunardi V, Franceschini D, et al. Ciprofloxacin and levofloxacin attenuate microglia inflammatory response via TLR4/NF-kB pathway[J]. J Neuroinflammation, 2019, 16(1): 148. DOI: 10.1186/s12974-019-1538-9.